
Installing and configuring Kerberos

Koncz Szabolcs
Szabó Csilla

Dept. of Technology of Information
Petru Maior University, Tg. Mures, Romania

2010

Abstract

Kerberos negotiates authenticated and optionally encrypted communications between two

points anywhere on the Internet, providing a layer of security that is not dependent on which side of a

firewall either client is on. Since studies have shown that half of the computer security breaches in

industry happen from inside firewalls, Kerberos V5 from MIT will play a vital role in the security of

our network.

In this paper we will present the Kerberos authentication mechanism, we will describe how can

be installed and configured the newest available release, Kerberos V5 release 1.7 on a UNIX system,

and also how can be configured the Secure Shell to work with Kerberos to ensure secure and reliable

communication over the network.

Table of Contents
Abstract..2
Introduction..4

Kerberos aims..4
Definitions of the components and terms..5
How does Kerberos work?..8

Installation of Kerberos V5..15
System requirements...15
Downloading the Kerberos V5 release 1.7 source code..15
Unpacking the sources...15
Building Kerberos...15

Building within a single tree...16
Building with separate build directories...16

Configurations of Kerberos V5..17
Installing KDCs..17
Create the database...18
Add administrators to the acl file..19
Add administrators to the Kerberos database...20
Create a kadmind keytab..20

Further configurations..21
Install the slave KDCs...21

Create host keys for the slave KDCs..21
Extract host keytabs for the KDCs...21
Set up the slave KDCs for database propagation..22
Propagate the database to each slave KDC...22
Create stash files on the slave KDCs..23
Add Kerberos principals to the database..23

Connecting through Kerberos..24
Start the Kerberos daemons on the master KDC...24
OpenSSH...24

Configure OpenSSH...25
Connecting..25

Conclusions..27
References..28

Introduction

In the real world, identification is something we, as human beings, do naturally, through

physical appearance or voice patterns. It is based on the assumption that those attributes are unique, and

that they can be trusted. This ability provides us with the possibility to distinguish one person from

another.

However, when put in a situation where we're not able to use those attributes to identify

someone, as in a phone call for example, we're left with finding some other means to prove our

identities. We sometimes identify ourselves with what is called a "shared secret", where one party asks

the other party to prove his identity through information that is known only by them, like a password.

When we add a computer to this mechanism, with an identification that needs to be provided over a

network, things are going a little more complex. Sending this "shared secret", or password, over an

unsecured network can be compared to shouting it in a crowded room.

Many authentication mechanisms were developed during the last decade to solve those

problems, Kerberos being one of them. In Greek mythology, Kerberos is the three-headed dog that

guards the entrance to the underworld, but in the computing world is a network authentication protocol

designed at MIT to provide strong authentication for client - server applications by using secret-key

cryptography.

Kerberos operates by encrypting data with a symmetric key. A symmetric key is a type of

authentication where both the client and server agree to use a single encryption/decryption key for

sending or receiving data. It differs from asymmetric systems, where a public key is known by virtually

everybody, while the private key remains secret, and it is stored on the server.

Kerberos aims

Before describing the elements that make up the Kerberos authentication system and looking at its

operation, some of the aims the protocol wishes to achieve are listed below:

➢ The user's password must never travel over the network;

➢ The user's password must never be stored in any form on the client machine: it must be

immediately discarded after being used;

4

➢ The user's password should never be stored in an unencrypted form even in the

authentication server database;

➢ The user is asked to enter a password only once per work session. Therefore users can

transparently access all the services they are authorized for without having to re-enter the

password during this session. This characteristic is known as Single Sign-On;

➢ Authentication information management is centralized and resides on the authentication

server. The application servers must not contain the authentication information for their users.

This is essential for obtaining the following results:

➔ The administrator can disable the account of any user by acting in a single

location without having to act on the several application servers providing the

various services;

➔ When a user changes its password, it is changed for all services at the same time;

➔ There is no redundancy of authentication information which would otherwise

have to be safeguarded in various places;

➢ Not only do the users have to demonstrate that they are who they say, but, when

requested, the application servers must prove their authenticity to the client as well. This

characteristic is known as Mutual authentication;

➢ Following the completion of authentication and authorization, the client and server must

be able to establish an encrypted connection, if required. For this purpose, Kerberos provides

support for the generation and exchange of an encryption key to be used to encrypt data.

Definitions of the components and terms

Client – It is an entity that can obtain a ticket, usually either a host or a user.

Host – It is a computer that can be accessed over a network.

Service – Any program or computer you access over a network.

Ticket – A temporary set of electronic credentials that verify the identity of a client for a particular

service. A ticket is a kind of encrypted data, stored on the client side, that is presented to an application

server to demonstrate the authenticity of the clients identity. The Kerberos communication is based

around these tickets.

5

The main information contained in a ticket includes:

• The requesting user's principal (generally the username)

• The principal of the service it is intended for

• The IP address of the client machine from which the ticket can be used

• The date and time (in timestamp format) when the tickets validity commences

• The ticket's maximum lifetime

• The session key (this has a fundamental role which is described below);

Keytab – It is a key table file containing one or more keys. A host or service uses a keytab file in

much the same way as a user uses his or her password.

Encryption – Kerberos often needs to encrypt and decrypt the messages (tickets and authenticators)

passing between the various participants in the authentication. It is important to note that Kerberos uses

only symmetrical key encryption (in other words the same key is used to encrypt and decrypt).

Principal – It is a string that names a specific entity to which a set of credentials may be assigned, the

name used to refer to the entries in the authentication server database. A principal is associated with

each user, host or service of a given realm. A principal in Kerberos is of the following type:

component1/component2/.../componentN@REALM , but in practice a maximum of two components are

used.

It generally has three parts:

• primary – the username or the name of the service

• instance – hostname or user group type, some kind of qualification

• realm – the logical network served by a single Kerberos database and a set of Key

Distribution Centers, it indicates an authentication administrative domain.

For a user the principal has the following type Name[/Instance]@REALM , where the instance is

optional and is normally used to better qualify the type of user (user1/admin@REALM). In the case of

services the principal looks as following: Service/Hostname@REALM . The first component is the

name of the service, for example ftp, ssh. The second component is the complete hostname (FQDN) of

6

the machine providing the requested service.

Key Distribution Center (KDC) – The machine that issues Kerberos tickets, this is the central part

of a Kerberos network.

It consists of three parts:

• an Authentication Server (AS), which answers requests for Authentication issued by

clients. The AS replies to the initial authentication request from the client, when the user,

not yet authenticated, must enter the password. Here, we're in the AS_REQUEST and

AS_REPLY challenging part (see below for details), where the client gets a Ticket

Granting Ticket (TGT). If the users are actually who they say they are they can use the

TGT to obtain other service tickets, without having to re-enter their password.

• a Ticket Granting Server, which issues Ticket Granting Service (TGS) to a client. This is

the TGS_REQUEST and TGS_REPLY part, where a client gets a TGS that allows him to

authenticate to a service accessible on the network.

• a database, that is the container for entries associated with users and services, it stores all

the secret keys (clients and services ones), as well as some information relating to Kerberos

accounts (creation date, policies, etc.).

Ticket Granting Ticket (TGT) – A special Kerberos ticket that permits the client to obtain

additional Kerberos tickets within the same Kerberos realm.

7

How does Kerberos work?

Authentication mechanism is the first step to be done in a Kerberos environment. It provides the

user with a Ticket Granting Ticket (TGT), that serves post-authentication for later access to specific

services, Single Sign On. At this point, it is important to underline that an application server never

communicates directly with the Key Distribution Center, the service tickets, even if packeted by TGS,

reach the service only through the client wishing to access them. The messages that are going to be

discussed are listed below:

• AS_REQ is the initial user authentication request (made with kinit) This message is

directed to the KDC component known as Authentication Server (AS);

• AS_REP is the reply of the Authentication Server to the previous request. Basically it

contains the TGT (encrypted using the TGS secret key) and the session key (encrypted using

the secret key of the requesting user);

• TGS_REQ is the request from the client to the Ticket Granting Server (TGS) for a service

ticket. This packet includes the TGT obtained from the previous message and an

authenticator generated by the client and encrypted with the session key;

• TGS_REP is the reply of the Ticket Granting Server to the previous request. Located inside

is the requested service ticket (encrypted with the secret key of the service) and a service

session key generated by TGS and encrypted using the previous session key generated by

the AS;

• AP_REQ is the request that the client sends to an application server to access a service. The

components are the service ticket obtained from TGS with the previous reply and an

authenticator again generated by the client, but this time encrypted using the service session

key (generated by TGS);

• AP_REP is the reply that the application server gives to the client to prove it really is the

server the client is expecting. This packet is not always requested. The client requests the

server for it only when mutual authentication is necessary.

8

The first message, the AS_REQ is sent to the KDC in plain text, where the client asks the KDC

(more specifically the AS) for a Ticket Granting Ticket and it contains:

• the client's principal name,

• the Ticket Granting Server's principal (termed "krbtgt principal", needed to obtain further

TGS

• the client timestamp

• the requested ticket lifetime (usually 8 to 10 hours long)

The KDC receives this message, checks if the client's principal has a match in the database, and if

the timestamp between client's machine and KDC are close enough (3 to 5 min.), this is just a way of

warning the user from on incorrect time synchronization, before going any further into authentication.

9

Illustration 1: Kerberos operation, http://www.zeroshell.net/eng/kerberos/Kerberos-operation/

Upon checking, the Authentication Server generates a random session key ("short term" key).

The KDC makes two copies of it, one is for the client and it is added to the AS_REP message, the

second copy remains available for the Ticket Granting Server. This key is mainly used for later

negotiations for other tickets concerning kerberized services.

If the client succeeded in his authentication, the KDC returns an AS_REP message, containing the

Ticket Granting Ticket, which will be stored in some kind of credential cache for future use.

The AS_REP message is formed of two layers; the first one is encrypted with the user's key, while

the second layer is the TGT itself, first encrypted with the Ticket Granting Server's key, then re-

encrypted with the user's key.

The content of the AS_REP message is the following:

• encrypted with user's key

▪ copy of session key for user

▪ ticket lifetime

▪ krbgt principal name

• first encrypted with Ticket Granting Server's key, then user's key. This is the TGT:

▪ copy of session key

▪ effective ticket lifetime

▪ KDC timestamp

▪ client principal

▪ client IP address

Although the TGT is decrypted and cached onto the client, its content cannot be read on the

client's side. It is effectively encrypted with the Ticket Granting Server's key, which is only

known by Ticket Granting Server.

10

The mechanism of Authentication is presented in the previous diagram. When the AS_REP,

comes back to the user an attempt is made to decrypt the part of the message encrypted by the KDC

using the secret key of the user stored in the database. If the user is really who he/she says, and has

entered the correct password, the decrypting operation will be successful and the session key will be

extracted, and the TGT will be stored in the user's credential cache.

Supposing that the client has already gone through the authentication mechanism, and has a

TGT (Ticket Granting Ticket) and a session key, now he can access particular service over the network

and for this he/she requires a TGS (Ticket Granting Service). This request is also separated into two

steps, TGS_REQ and TGS_REP. Both messages are encrypted for security reasons.

When the user wishes to access a kerberized service, he must authenticate himself to it, this

means a separate connection to the Ticket Granting Server, the TGE_REQ message. This message is

composed of :

• the TGS request itself, containing the service principal and the requested lifetime

• the TGT acquired earlier, with a successful authentication

• an authenticator

11

Illustration 2: TGT delivery [Migeon]

The authenticator is a message encrypted with the session key acquired during the AS process

and contains the user's principal and a timestamp. This way the KDC ensures that this message is

coming from the right person, by checking the temporary session key, and the timestamp. Upon a

successful request (this means a valid TGT, and a correct authenticator), the Ticket Granting Server

returns the TGS.

At this stage the server generates a new set of session keys. The reply message from the server

is encrypted with the session key acquired through AS process so only the client that effectively

identified himself some time ago to KDC is able to read its contentand to extract the TGS from it. The

TGS_REP message contains the following:

• encrypted with session key acquired through AS process

▪ copy of the new session key for the user

▪ effective ticket lifetime

▪ service's principal name

• first encrypted with service's long term key, than with the actual session key, this is the

TGS:

▪ copy of the new session key for service

▪ effective ticket lifetime

▪ KDC timestamp

▪ client principal

▪ client IP address

When the client receives the reply, having in the credential cache the session key, it can decrypt

the part of the message containing the other session key and the TGS, but this remain encrypted. In the

next diagram are presented visually these steps, for requiring this TGS.

12

Once the client obtained its TGS, he will use it to authenticate himself to the requested service

directly, via an AP_REQ message. The service has access to its keytab, a file that stores its long term

key. This key will allow the service to decrypt the TGS sent by the client, and get all the information

needed to identify user and create security context. The AP_REQ message it is not standard, unlike the

previous messages where the KDC was involved, it depends on the application. The AP_REQ

contains:

• an encrypted authenticator with the session key, containing

▪ timestamp

▪ user principal

• the TGS acquired earlier

When the previous request arrives, the application server opens the ticket using the secret for

the requested service and extracts the session key, which it uses to decrypt the authenticator. To

establish that the requesting user is authentic and thus grant access to the service, the server verifies the

following conditions:

• the ticket has not expired

13

Illustration 3: TGS delivery [Migeon]

• the user principal matches the one present in the ticket

• the ip address of the AP_REQ matches the one in the ticket

As a conclusion we can say that Kerberos protocol can be divided into three main steps:

1. Authentication process, where the user (and host) obtain a Ticket Granting Ticket (TGT)

as authentication token

2. Service request process, where the user obtain a Ticket Granting Service (TGS) to access

a service

3. Service access, where the user use TGS to authenticate and access a specific service.

14

Installation of Kerberos V5

System requirements

In order to build Kerberos V5, it will need approximately 60-70 megabytes of disk space. The

exact amount varies depending on the platform and whether the distribution is compiled with

debugging symbol tables or not.

Downloading the Kerberos V5 release 1.7 source code

On the http://web.mit.edu/Kerberos/dist/index.html#krb5-1.7 MIT Kerberos Distribution Page

can be found the newest Kerberos release's source code – the Kerberos V5 release 1.7 – packed in a tar

file with a PGP signature, named krb5-1.7-signed.tar.

Unpacking the sources

After we download this package from the given MIT page, we unpack it: this way we get two

files: krb5-1.7.tar.gz, which contains all the source codes and also documentations, and krb5-

1.7.tar.gz.asc, which is a PGP signature for the source tree. MIT highly recommends that you verify the

integrity of the source code using this signature.

We unpack the compressed krb5-1.7.tar.gz file in some directory, for example

/home/student/krb5-1.7.

Building Kerberos

We can choose from different options regarding the building of Kerberos: if we will use it on

one platform we can use a single directory tree which contains both the source files and the object files.

If we need to maintain Kerberos on multiple platforms, we may use separate build trees for each

platform.

We have chosen the building within a single tree.

15

http://web.mit.edu/Kerberos/dist/index.html#krb5-1.7

Building within a single tree

In a terminal (in root mode) we must type:

>>cd /home/student/krb5-1.7/src

>>./configure

>>make

>>make check

>>make install

The ./configure command configures the installation: checks, if the system has all the required

libraries for a proper function of Kerberos. There must be a C compiler, tgetent(curses/ncurses

libraries) and yacc, g++ command handlers.

Note: the C compiler must conform to ANSI C (ISO/IEC 9899:1990, c89). Some operating

systems do not have ANSI C compiler, or their default compiler requires extra command-line options to

enable ANSI C conformance.

The make check command tests the build: if appears the krb5-config tests pass line, we can

continue with the installation.

The make install command installs the binaries.

Building with separate build directories

If you wish to keep separate build directories for each platform, for example you wish to build a
directory for pmax binaries you might use the following procedure:

>>mkdir /home/student/krb5-1.7/pmax
>>cd /home/student/krb5-1.7/pmax
>>..src/configure
>>make

16

Configurations of Kerberos V5

Installing KDCs

The Key Distribution Centers (KDCs) issue Kerberos tickets. Each KDC contains a copy of the

Kerberos database. The master KDC contains the master copy of the database, here are made all

database changes, such as password changes. Slave KDCs provide Kerberos ticket-granting services.

1. Firstly we must edit the configuration files: /etc/krb5.conf and /usr/local/var/krb5kdc/kdc.conf

to reflect the correct information for our realm.

krb5.conf:

The krb5.conf file contains Kerberos configuration information, including the locations of KDCs and

admin servers for the Kerberos realms, defaults for the current realm and for Kerberos applications. It

also contains mappings of hostnames onto Kerberos realms.

This file is set up in the style of a Windows INI file: sections are headed by the section name in square

brackets.

• libdefaults: contains default values used by the Kerberos V5 library.

• realms: contains subsections keyed by Kerberos realm names. Each section describes realm-

specific information, including where to find the Kerberos servers for that realm.

• logging: contains relations which determine how Kerberos programs are to perform logging.

17

kdc.conf:

The kdc.conf file contains KDC configuration information, including defaults used when issuing

Kerberos tickets. This file is set up in the same format as the krb5.conf file.

The file contains the following sections:

• kdcdefaults: contains default values for overall behavior of the KDC, for example the ports used

by Kerberos.

• realms: contains subsections keyed by Kerberos realm names. Each subsection describes realm-

specific information, including where to find the Kerberos servers for that realm.

Create the database

The kdb5_util command will be used on the master KDC to create the Kerberos database and

the optional stash file. The stash file is a local copy of the master key that resides in encrypted form on

the KDC's local disk, and is used to authenticate the KDC itself automatically before starting the

kadmind and krb5kdc daemons. If we do not create it, the system will ask for this master key each

time we start the Kerberos daemons.

The creation of the Kerberos database and stash file can be done by using the following

command:

>>/usr/local/sbin/kdb5_util create -r localhost -s

18

After typing the master key two times, in the directory specified in the kdc.conf file

(/usr/local/var/krb5kdc) will be created five files: two Kerberos database files (principal.db and

principal.ok), the Kerberos administrative database file (principal.kadm5), the administrative database

lock file (principal.kadm5.lock) and the stash file (.k5stash). The -s option creates the stash file.

Add administrators to the acl file

We need to create an Access Control List (acl) file, and put the Kerberos principals into it. This file is

used by the kadmind daemon to control which principals may view and modify the Kerberos database

files. This file's name is the one given in the kdc.conf file.

The format of the file is:

Kerberos_principal permissions [target_principal] [restrictions]

kadm5.acl:

A common use of an admin instance is so you can grant separate permissions to a separate

Kerberos principal.

The permissions are represented by single letters, upper-case letters representing negative

permissions (disallow):

• a: allows the addition of principals or policies in the database

• d: allows the deletion of principals or policies in the database

• m: allows the modification of principals or policies in the database

• c: allows the changing of the passwords for principals in the database

• i: allows inquiries to the database

• l: allows the listing of principals or policies in the database

19

• s: allows the explicit setting of the key for a principal.

• *: all privileges (admcil)

• x: all privileges (like *)

Add administrators to the Kerberos database

Next step is to add administrative principals to the Kerberos database. These administrative

principals are the ones added to the acl file.

>>/usr/local/sbin/kadmin.local

kadmin.local: addprinc student@localhost

We must enter then re-enter a password for this principal, and if we succeed a “Principal

“student@localhost” created” message will appear.

Create a kadmind keytab

This is an optional operation. The kadmind keytab is the key that the legacy administration

daemons kadmind4 and v5passwdd will use to decrypt administrators' or clients' Kerberos tickets to

determine whether or not they should have access to the given database.

If we need to create the kadmind keytab with entries for the principals student and

student/changepw (these principals are placed in the Kerberos database automatically, when we create

them), we type the following command:

>>kadmin.local

kadmin.local: ktadd -k /usr/local/var/krb5kdc/kadm5.keytab student student/changepw

The ktadd will save the extracted keytab as /usr/local/var/krb5kdc/kadm5.keytab, like it was specified

in the kdc.conf file.

If we do not use slave KDCs, at this point the installation and configuration is finished, and Kerberos

is ready to be used.

20

mailto:student@localhost
mailto:student@localhost

Further configurations

Install the slave KDCs

We are now ready to start configuring the slave KDCs. Assuming we are setting the KDCs up

so that we can easily switch the master KDC with one of the slaves, we should perform each of these

steps on the master KDC as well as the slave KDCs.

Create host keys for the slave KDCs

Each KDC needs a host principal in the Kerberos database. We can enter these from any host,

once the kadmind daemon is running. For example, if the realm is ATHENA.MIT.EDU, our master

KDC were called kerberos.mit.edu, and we had two KDC slaves named kerberos-1.mit.edu and

kerberos-2.mit.edu, we would type the following:

 shell% /usr/local/sbin/kadmin
 kadmin: addprinc -randkey host/kerberos.mit.edu
 NOTICE: no policy specified for "host/kerberos.mit.edu@ATHENA.MIT.EDU";
 assigning "default"
 Principal "host/kerberos.mit.edu@ATHENA.MIT.EDU" created.
 kadmin: addprinc -randkey host/kerberos-1.mit.edu
 NOTICE: no policy specified for "host/kerberos-1.mit.edu@ATHENA.MIT.EDU";
 assigning "default"
 Principal "host/kerberos-1.mit.edu@ATHENA.MIT.EDU" created.
 kadmin: addprinc -randkey host/kerberos-2.mit.edu
 NOTICE: no policy specified for "host/kerberos-2.mit.edu@ATHENA.MIT.EDU";
 assigning "default"
 Principal "host/kerberos-2.mit.edu@ATHENA.MIT.EDU" created.
 kadmin:

Extract host keytabs for the KDCs

Each KDC (including the master) needs a keytab to decrypt tickets. Ideally, we should extract

each keytab locally on its own KDC. If this is not feasible, we should use an encrypted session to send

them across the network. To extract a keytab on a KDC called kerberos.mit.edu, we would execute the

following command:

 kadmin: ktadd host/kerberos.mit.edu
 kadmin: Entry for principal host/kerberos.mit.edu@ATHENA.MIT.EDU with

21

 kvno 1, encryption type DES-CBC-CRC added to keytab
 WRFILE:/etc/krb5.keytab.
 kadmin:

Set up the slave KDCs for database propagation

The database is propagated from the master KDC to the slave KDCs via the kpropd daemon.

To set up propagation, we create a file on each KDC, named

/usr/local/var/krb5kdc/kpropd.acl, containing the principals for each of the KDCs. For

example, if the master KDC were kerberos.mit.edu, the slave KDCs were kerberos-
1.mit.edu and kerberos-2.mit.edu, and the realm were ATHENA.MIT.EDU, then the file's

contents would be:

 host/kerberos.mit.edu@ATHENA.MIT.EDU
 host/kerberos-1.mit.edu@ATHENA.MIT.EDU
 host/kerberos-2.mit.edu@ATHENA.MIT.EDU

Then, we add the following lines to /etc/inetd.conf file on each KDC (the line beginning with

=> is a continuation of the previous line):

 krb5_prop stream tcp nowait root /usr/local/sbin/kpropd kpropd
 eklogin stream tcp nowait root /usr/local/sbin/klogind
 => klogind -k -c -e

The first line sets up the kpropd database propagation daemon. The second line sets up the eklogin
daemon, allowing Kerberos-authenticated, encrypted rlogin to the KDC.

We also need to add the following lines to /etc/services on each KDC:

 kerberos 88/udp kdc # Kerberos authentication (udp)
 kerberos 88/tcp kdc # Kerberos authentication (tcp)
 krb5_prop 754/tcp # Kerberos slave propagation
 kerberos-adm 749/tcp # Kerberos 5 admin/changepw (tcp)
 kerberos-adm 749/udp # Kerberos 5 admin/changepw (udp)
 eklogin 2105/tcp # Kerberos encrypted rlogin

Propagate the database to each slave KDC

First, we create a dump of the database on the master KDC, as follows:

 shell% /usr/local/sbin/kdb5_util dump /usr/local/var/krb5kdc/slave_datatrans

22

Next, we need to manually propagate the database to each slave KDC, as in the following example.

(The lines beginning with => are continuations of the previous line.):

 /usr/local/sbin/kprop -f /usr/local/var/krb5kdc/slave_datatrans
 => kerberos-1.mit.edu
 /usr/local/sbin/kprop -f /usr/local/var/krb5kdc/slave_datatrans
 => kerberos-2.mit.edu

We will need a script to dump and propagate the database. The following is an example of a bourne

shell script that will do this. (Note that the line that begins with => is a continuation of the previous

line)

 #!/bin/sh

 kdclist = "kerberos-1.mit.edu kerberos-2.mit.edu"

 /usr/local/sbin/kdb5_util "dump
 => /usr/local/var/krb5kdc/slave_datatrans"

 for kdc in $kdclist
 do
 /usr/local/sbin/kprop -f /usr/local/var/krb5kdc/slave_datatrans $kdc
 done

Create stash files on the slave KDCs

Create stash files, by issuing the following commands on each slave KDC:

 shell% kdb5_util stash
 kdb5_util: Cannot find/read stored master key while reading master key
 kdb5_util: Warning: proceeding without master key
 Enter KDC database master key: <= Enter the database master key.
 shell%

Add Kerberos principals to the database

Once our KDCs are set up and running, we are ready to use kadmin to load principals for our

users, hosts, and other services into the Kerberos database. The keytab is generated by running

kadmin and issuing the ktadd command.

23

Connecting through Kerberos

Start the Kerberos daemons on the master KDC

To start the Kerberos daemons, we need to type the following commands in a terminal in root

mode:

>>/usr/local/sbin/krb5kdc

>>/usr/local/sbin/kadmind

Each daemon will fork and run in the background.

Assuming we want these daemons to start up automatically at boot time, we can add them to the KDC's

/etc/rc or /etc/inittab file. We need to have a stash file in order to do this.

We can verify that they started properly by checking for their startup messages in the logging locations

defined in /etc/krb5.conf. For example:

 shell% tail /var/log/krb5kdc.log
 Dec 02 12:35:47 beeblebrox krb5kdc[3187](info): commencing operation
 shell% tail /var/log/kadmin.log
 Dec 02 12:35:52 beeblebrox kadmind[3189](info): starting

Any errors the daemons encounter while starting will also be listed in the logging output.

OpenSSH

For administration, it is quite common to bounce from one host to another, mainly for

maintenance tasks. As a consequence, having to retype a full password each time you need to login can

be quite annoying.

OpenSSH provides a mechanism to avoid typing in a password to authenticate. It is a challenge-based

negotiation, built around asymmetric keys.

Before we can connect with ssh and Kerberos, we need to configure ssh to use it with Kerberos.

For this we need to take the following steps.

24

Configure OpenSSH

Edit the ssh server configuration file [by default, in /etc/ssh/sshd_config] and ssh client

configuration file [by default, in /etc/ssh/ssh_config].

GSSAPIAuthentication yes

KerberosAuthentication yes

After these, we need to restart the ssh server:

>>/etc/init.d/sshd restart

Connecting

We make sure, that the Kerberos daemons are started by typing the following command:

>>ps -A |grep krb5kdc

If they aren't started, we give the following commands:

>>/usr/local/sbin/krb5kdc

>>/usr/local/sbin/kadmind

If the user, who wants to connect with ssh and Kerberos to localhost, doesn't exist in the

Kerberos database yet, we need to create it.

We can do this, by typing the following commands in a terminal in root mode:

>>kadmin.local

kadmin.local: ank student

We will be prompted to enter and re-enter a password for the user student, thus the principal

student@localhost will be created.

Now, we exit the Kerberos shell by typing quit:

kadmin:local: quit

25

mailto:student@localhost

Now that the user is created, it can authenticate to Kerberos. To do this the following command

must be given:

>>kinit student

After we give the password we should be now authenticated to Kerberos as student@localhost

(we now have student's TGT). To verify, we execute klist, and check that we have been properly

authenticated:

>>klist

We should see the starting and expiring date of our ticket.

At this point, we can connect to localhost through ssh and Kerberos:

>>ssh -v localhost -l student

We type the Kerberos password and this is it: we are connected to localhost as student.

26

Conclusions

Kerberos V5 release 1.7 is based on the Kerberos authentication system developed at MIT.

Under Kerberos, a client sends a request for a ticket to the Key Distribution Center (KDC). The KDC

creates a ticket-granting ticket (TGT), which - if is successfully decrypted - indicates proof of the

client's identity and permits the client to obtain additional tickets, which give permission for specific

services. The requesting and granting of these additional tickets is user-transparent.

 One of these specific services is connecting with SSH to different servers, to which Kerberos

provides an authentication mechanism for additional security.

The installation and configuration of the Kerberos is a relatively simple and fast procedure and

proves to be highly efficient with Single Sign On.

27

References

http://web.mit.edu/kerberos/#what_is

http://web.mit.edu/kerberos/www/krb5-1.2/krb5-1.2.6/doc/user-guide.html#SEC3

http://h71000.www7.hp.com/openvms/products/kerberos/kerberos_doc.html

http://www.softwareonline.hu/Article/View.aspx?id=2662

http://technet.microsoft.com/en-us/library/bb742516.aspx

http://learn-networking.com/network-security/how-kerberos-authentication-works

http://www.linuxtopia.org/online_books/linux_system_administration/kerberos_guides/kerberos-
5.15_installation_guide/index.html

http://www.zeroshell.net/eng/kerberos/

http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci212437,00.html

http://www.kerberos.org/software/tutorial.html

http://www.zeroshell.net/eng/kerberos/Kerberos-operation/

http://www.visolve.com/security/ssh_kerberos.php

Kerberos V5 Installation Guide

Kerberos V5 System Administrator's Guide

Kerberos V5 UNIX User's Guide

 [Migeon] Jean-Yves Migeon: The MIT Kerberos Administrator’s How-to Guide Protocol, Installation
and Single Sign On

28

http://www.zeroshell.net/eng/kerberos/
http://www.visolve.com/security/ssh_kerberos.php
http://www.zeroshell.net/eng/kerberos/Kerberos-operation/
http://www.kerberos.org/software/tutorial.html
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci212437,00.html
http://www.linuxtopia.org/online_books/linux_system_administration/kerberos_guides/kerberos-5.15_installation_guide/index.html
http://www.linuxtopia.org/online_books/linux_system_administration/kerberos_guides/kerberos-5.15_installation_guide/index.html
http://learn-networking.com/network-security/how-kerberos-authentication-works
http://technet.microsoft.com/en-us/library/bb742516.aspx
http://www.softwareonline.hu/Article/View.aspx?id=2662
http://h71000.www7.hp.com/openvms/products/kerberos/kerberos_doc.html
http://web.mit.edu/kerberos/www/krb5-1.2/krb5-1.2.6/doc/user-guide.html#SEC3
http://web.mit.edu/kerberos/#what_is

	Abstract
	Introduction
	Kerberos aims
	Definitions of the components and terms
	How does Kerberos work?

	Installation of Kerberos V5
	System requirements
	Downloading the Kerberos V5 release 1.7 source code
	Unpacking the sources
	Building Kerberos
	Building within a single tree
	Building with separate build directories

	Configurations of Kerberos V5
	Installing KDCs
	Create the database
	Add administrators to the acl file
	Add administrators to the Kerberos database
	Create a kadmind keytab

	Further configurations
	Install the slave KDCs
	Create host keys for the slave KDCs
	Extract host keytabs for the KDCs
	Set up the slave KDCs for database propagation
	Propagate the database to each slave KDC
	Create stash files on the slave KDCs
	Add Kerberos principals to the database

	Connecting through Kerberos
	Start the Kerberos daemons on the master KDC
	OpenSSH
	Configure OpenSSH
	Connecting

	Conclusions
	References

