
An Abstract Model for Security Protocol Analysis

GENGE BELA

IOSIF IGNAT

Computer Science Department

Technical University of Cluj-Napoca

28, Gh. Baritiu St., 400027, Cluj-Napoca

ROMANIA

bgenge@upm.ro, Iosif.Ignat@cs.utcluj.ro, http://users.utcluj.ro/~ignat

Abstract – Security protocol analysis techniques are today mature enough to verify multiple properties of security

protocols (correctness, secrecy, authentication). However, because security protocols are growing each day and

more complex situations arise (like multi-protocol environments), we consider that the analysis process should be

simplified by creating an abstract model for security protocols that captures the essence of the property that is

checked. Therefore, in this paper we propose such an abstract model, based on message component types (session

keys, nonces, participants), that captures the structure of security protocol messages, thus simplifying the analysis

against attacks based on message similarities, that we call “structural attacks”. The mentioned attacks are

formalized using the proposed typed framework, which is validated by modeling and analyzing the Neuman-

Stubblebine authentication protocol.

Key-Words: Security protocols, formal analysis, message typing, replay attacks.

1 Introduction
Security protocols, by definition, are protocols that use

cryptographic primitives, which allow the involved

parties to exchange some secret information (i.e. shared

key or secret data). These protocols have been

intensively analyzed in the last few decades, mainly

because with the expansion of the internet, existing

security holes can now be exploited by malicious users.

From the resulting protocol verification techniques,

we identify three major approaches: model checking,

theorem proving and static analysis.

Model checking [1] deals with the analysis of an

input model viewed as a finite set of states. The

analysis starts from an initial state and, by applying

state transition rules, it generates the whole state space.

In every step, a desired property is checked until a state

which violates that property is found. Because it can be

fully automated, it requires little or no human

interaction. A major drawback of this method is the

state space explosion problem, as the number of states

can become very large even when dealing with simple

protocols.

The second approach used in the process of

protocol verification is theorem proving [3, 4]. Rather

than dealing with a set of states, as in the previous

method, this approach manipulates logical formulae.

Thus, a protocol is viewed as a set of clauses

predicating on participant capabilities and a set of

inference rules for capturing the message flow between

participants. Although theorem proving may deal with

an unlimited number of protocol instances and with

arbitrary complex data, the fact that it requires (expert)

human intervention (to formulate inference rules,

lemmas, theorems) makes it hard to use for the

inexperienced user.

Static analysis has been traditionally used in

software analysis to create program abstractions for a

simplified analysis. In the area of security protocols,

static analysis has only been recently applied in [5, 6].

Here, participants are represented as processes and

security properties are embodied in participant

specification by means of annotations, having the form

of typed messages, which restrict the data flow through

these points. A major drawback of this approach is that

it may find false errors because of the abstraction

model that eliminates much of the actual data flow.

The presented approaches have one major aspect in

common: they all require an initial protocol

specification. The above-presented methods are today

mature enough to verify multiple properties of security

protocols (correctness, secrecy, authentication).

However, because protocols are growing each day and

more complex situations arise, like multi-protocol

environments [7, 8], new abstract specifications must

be created to simplify the analysis. Thus, if a

specification captures the essence of a certain attack,

existing tools (that allow the integration of the model,

like Maude [16, 17]) may find these attacks much

faster.

Therefore, we propose a typed specification model

for structural analysis of security protocols that

simplifies the analysis process undertaken by existing

methods [1, 3, 5], by creating an abstract, simplified

model of a security protocol.

A protocol specification is based on the

specification of participants that communicate by

exchanging messages. A typed specification defines a

protocol message as the set of its component types (i. e.

participant types, key types). This results in an abstract

modeling of security protocols by transforming the

actual values from the regular specification to their

corresponding types.

Because the resulting model captures the structure

of a security protocol, an analysis based on this model

is called a structural analysis. Thus, by simply running

a syntactical comparison of the component messages,

we may find attacks resulting from message similarities

that we call structural attacks. We identify two such

attacks: replay attacks (re-use of generated messages in

different contexts than the ones intended in the

specification) and type confusion attacks (where a

message type, for example a session key, may not be

verified because of limited participant knowledge).

The paper is structured as follows. In section 2 we

define the protocol attacks that we consider having a

structural source. We continue with section 3 where we

model security protocols and our typed security

protocol concepts using first order predicate logic [18].

In section 4 we formalize structural attacks and

validate our framework by modeling and analyzing the

key exchange part from the Neuman-Stubblebine [12]

authentication protocol. We compare our work to

related ones in section 5 and we finish with a

conclusion and future work in section 6.

2 Structural security protocol attacks
In this section we present the main security protocol

attacks we consider to have a message structural

source: replay and type confusion (also known as type

flaw) attacks [10, 11].

Because security protocol specifications may not

be so familiar to the reader, in this section we use only

a minimal notation, a more extended one being given in

section 3. Thus, encryption will be denoted by the

“{}Kab” construct, where Kab is the key. Also,

protocol participants will be referred to as roles,

denoted by capital letters (A, B, S).

2.1 The Neuman-Stubblebine security protocol
To exemplify a new protocol analysis technique, it is

always good practice to use an already known protocol.

This is why we have chosen the Neuman-Stubblebine

[12] (N-S) authentication protocol, which has benefited

from an exhaustive analysis over the years [19, 20].

In the next sections, we only provide a limited

analysis of the key distribution part of the N-S

protocol, which should be enough to give the reader a

general idea about the severity of replay and type-flaw

attacks.

Figure 1. Key distribution part of the

Neuman-Stubblebine authentication protocol

The N-S protocol (Figure 1) is initiated by

participant A by sending to participant B a message

containing his name (A) and a nonce (i.e. “number once

used”) Na. Receiving this message, B generates a new

message that is sent to server S, containing his name

(B), a message term encrypted with the shared key Kbs

and a nonce Nb.

By receiving a valid message from B (i.e. message

2), the server knows that A wants to establish a session

key with B, which he generates in the form of Kab.

Then, he encrypts the session key in two different

messages using Kas (the key that A shares with the

server) and Kbs (the key that B shares with S)

respectively. The messages are then sent to participant

A along with the nonce generated by B.

On receiving a valid message from the server (i.e.

message 3), participant A, knowing his shared key

(Kas), decrypts the message part meant for him, thus

determining the session key. Then, he uses this key to

encrypt the Nb nonce, which is sent to B along with the

message part encrypted using Kbs. This final message

informs B about the session key and ensures him that

the key was generated by the third-party server and that

another party (possibly A) is in the possession of the

same key.

2.2 Replay attacks
The generalized definition of a replay attack is: the use

of protocol generated messages in other contexts than

the ones intended (provided in the specification),

thereby fooling the honest participant(s) into accepting

the messages as valid ones.

Figure 2. Replay attack on the

Neuman-Stubblebine authentication protocol

The replay attack presented in Figure 2 involves

two participants, A and B, and an intruder I(S) that

intercepts and re-routes the messages sent to server S.

An attack based on this configuration consists of

resending the two message terms B and Nb to role B,

thus fooling him that a session with himself must be

generated. Although this looks like a harmless replay

attack, if the effort on B to generate a new session

(which may involve multiple server interaction,

database communication) is high, then it may lead to a

Denial of Service attack.

In the presented example, the intruder uses B’s

capabilities to generate nonces and valid messages (by

simply replaying them), therefore B is said to act as an

oracle [11] (because he always provides the correct

answer).

2.3 Type flaw attacks
We say that a type flaw (i.e. type confusion) attack

possibility arises when a component of a received

message may be interpreted another way than it was

intended by the source that created the message. This

may happen because, for example, session keys

generated by a third party server cannot be checked for

validity by the receiving role. In this context, we

identify two kinds of type flaws: basic type flaws and

all type flaws. Thus, if a basic message component

(which can not be further decomposed) is interpreted as

another basic component, then we are dealing with a

basic type flaw. If a message component (which has

multiple basic components) is interpreted as a basic

message component, then have an all type flaw.

The security protocol model presented in section 3

is only able to capture basic type flaws because all type

flaws requires term reduction techniques that are

considered to be part of a future work.

Figure 3. Type flaw attack on the

Neuman-Stubblebine authentication protocol

An example of a basic type flaw attack is presented

in figure 3, where I(A, B) denotes an intruder that is

able to intercept messages sent to A and B and I(S)

denotes the same intruder capable of intercepting

messages sent to the server. In fact, the intruder has

total control over the network, it can create new

messages, it can compose and decompose messages,

replay and delete messages. An intruder with these

capabilities corresponds to the intruder model

described in the Dolev-Yao security model [13].

Having unlimited access to the communication

channel, the intruder intercepts message 1 sent by A to

B, thus learning the nonce Na. After this, he forwards

the received message to B. B then generates a new

nonce (Nb) and a message encrypted with his shared

key, which he both sends to the server, along side with

his name. This message is also intercepted by the

intruder, who thus learns Nb.

In the original message exchange (Figure 1), B

reaches final state when he receives a valid final

message from A (i.e. message 4). To make participant

B reach this state, the intruder sends message 2 (after

creating a new encrypted part), intercepted from the

same B, to B. Because of structural similarity and

because B cannot check the validity of Kab, this is

actually possible, leading to type confusion and

acceptance of the new message as a valid one. Thus,

the key that B thinks it shares with A becomes Na

instead of Kab, which was in fact the intended one.

3 Typed security protocol specification
In this section we construct our typed model of security

protocols using first order predicate logic [18]. We start

by defining a few basic concepts and continue with the

formalization of a regular protocol specification. Then,

we define our typed specification of security protocols

and provide transformation functions from the regular

specification to our typed one.

3.1 Basic concepts and considerations

A system consists of a number of communicating

agents. A security protocol describes the behavior of

these agents also known as roles. Thus, specifying a

security protocol is reduced to specifying the behavior

of the roles involved in the protocol.

Basic sets. The sets that form the foundation of our

constructs are the following: R (denoting a set of roles,

for example {A, B, C}, where A, B, C denote role

names), N (denoting a set of nonces, for example {Na,

Nb, Nc, Nt}, where Na is the nonce generated by role

A, and so on, and Nt is the notation we use for

timestamps considered to have the same behavior as a

nonce), and F (denoting a set of function names, for

example sym, representing symmetric encryption, and

asym, representing asymmetric encryption).

Cryptographic primitives. The security protocol

specifications that we consider use an idealized, black-

box view on cryptographic primitives (i.e.

mathematical constructs like encryption, decryption).

This means that the primitives are considered to be

implemented using flawless algorithms that guarantee

“perfect encryption”. The algorithm types we consider

are symmetric (i.e. the same key is used for encrypting

and decrypting data) and asymmetric (i.e. a public key

is used for encryption and a private key for decryption).

Communication model. The communication model

corresponds to the “Dolev-Yao” security model [13]

where any role can read a message from the

communication channel and any role can send a

message to the channel. For a message to be considered

readable it must correspond to a certain blueprint, taken

from the role specification.

3.2 Security protocol specification

Because roles communicate by exchanging messages,

to be able to define a role specification we have to

define what a message is. To do this, first we define the

encryption keys that appear in security protocol

messages using the following grammar:

Keys: K ::= k (session key) (1)

 | sh A B (shared permanent key)

 | pk A (public key)

 | sk A (secret key)

We use the symbol K to range over keys that

appear in messages. In the above definition, the role

names are not restricted to only A and B. If other roles

appear in a specification, they may also be used.

The definition of a security protocol message (or

simply a message) introduces constructors for

encryption (denoted by curly brackets) and pairing. We

expand on these after the definition. Thus, a Message,

or more appropriately a Message Term, written as M, is

defined as:

 Message Term: M ::= . | R | N | K | (2)

 F (M) | (M, M) | {M}M

To denote an empty message term, we use the “.”

symbol. The type of the encryption algorithm

(symmetric or asymmetric) and the key that is used are

denoted by a subscript placed after the “{}” brackets. If

the subscript is not a function of F, then the encryption

is considered to be symmetric. Also, if the context

allows us (does not lead to confusions) we omit the

specification of the function, leaving only the term

representing the encryption key, thus denoting a

symmetric encryption.

Example message constructions having the same

meaning are {A}sym(k) and {A}k: the name of the role A

is encrypted with session key k using a symmetric

algorithm. However, not the same thing may be said

about these constructs: {A}asym(k) and {A}k. In the first

case, k is used in an asymmetric encryption, while in

the second case it is used in a symmetric encryption.

Because we have to distinguish between sent and

received messages, we define two predicates send, recv

: R × R × M to denote the sending and receiving of a

message having a source role and a destination role.

The composition and decomposition of messages are

defined inductively by the following rules:

send(r, r′, t1) ∧ send(r, r′, t2) ⇔ (3)

 send(r, r′, (t1, t2)),

send(r, r′, t) ∧ send(r, r′, f (t1, …, tn)) ⇔ (4)

send(r, r′, (t, f (t1, …, tn))),

recv(r, r′, t1) ∧ recv(r, r′, t2) ⇔ (5)

recv(r, r′, (t1, t2))

recv(r, r′, t) ∧ recv(r, r′, f (t1, …, tn)) ⇔ (6)

 recv(r, r′, (t, f (t1, …, tn))),

where r, r′ ∈ R , t, t1, …, tn ∈ M and f ∈ F. r and r′ are

used to denote a source role and a destination role,

respectively.

Thus, we can define a role specification as a set of

send and recv predicates, using an index label i ∈ I to

differentiate between similar occurrences:

RoleSpec = {sendi(r, r′, t), recvi(r, r′, t) | (7)

 t ∈ M, i ∈ I, r, r′ ∈ R }

Having defined the role specification, we can

define a protocol specification describing the behavior

of a number of roles, as the function ProtSpec=R →

RoleSpec.

An example specification of a role in a

NonceExchange protocol is:

NonceExchange(A) = {send1(A, B, (A, {A, Na}sh A B)),

 recv2(B, A, ({B, Na, Nb}sh A B))},

where A and B are the participating roles, Na is the

nonce generated by A, Nb is the nonce generated by B

and sh A B is the shared key used by A and B to encrypt

the exchanged messages.

3.3 Typed security protocol specification

Our typed specification is based on the Basic Types

defined by the following grammar:

BasicTypes: τ ::= r (role type) (8)

| n (nonce type)

| k (session key type)

| sh A B (shared key type)

| pk A (public key type)

| sk A (secret key type)

Comparing the definition of a Message from

section 3.2 with the previous definition, it can be seen

that the regular (non-italic) written letters stand for the

types corresponding to the components of a Message.

We use the symbol τ to denote all the possible basic

types.

A Typed Message, or Typed Message Term, written

as tM, is constructed using the basic types τ and has the

following definition (using the “.” symbol to denote an

empty typed message term):

Typed Message Term: tM ::= . | τ | F (tM) | (9)

 (tM, tM) | {tM}tM

The definition of a typed role specification uses the

tsend, trecv : R × R × tM predicates to express sending

and receiving of Typed Messages from a source role to

a destination role and it is similar to the definition of a

role specification from the previous section:

TRoleSpec = {tsendi(r, r′, t), trecvi(r, r′, t) | (10)

 t ∈ tM, i ∈ I, r, r′ ∈ R }

The composition and decomposition rules for the

typed messages are defined as:

tsend(r, r′, t1) ∧ tsend(r, r′, t2) ⇔ (11)

 tsend(r, r′, (t1, t2)),

tsend(r, r′, t) ∧ tsend(r, r′, f (t1, …, tn)) ⇔ (12)

tsend(r, r′, (t, f (t1, …, tn))),

trecv(r, r′, t1) ∧ trecv(r, r′, t2) ⇔ (13)

 trecv(r, r′, (t1, t2)),

trecv(r, r′, t) ∧ trecv(r, r′, f (t1, …, tn)) ⇔ (14)

 trecv(r, r′, (t, f (t1, …, tn))),

where r, r′ ∈ R , t, t1, …, tn ∈ tM and f ∈ F.

Using the same symmetry of thought, as was the

case of the TRoleSpec, we define a typed security

protocol specification as the function TProtSpec=R →

TRoleSpec.

An example modeling of a hypothetical

KeyGeneration protocol for a role A is:

KeyGeneration(A) = {tsend1(A, B, (r, r, {r, n}sh A B)),

 trecv2(B, A, (r, {r, k, n}sh A B))}.

3.4 Transformation

Although we can model security protocols using the

definition of typed protocol specification, as was the

case of the KeyGeneration protocol example, to model

existing protocols in our typed framework, we need a

function that transforms untyped messages (i.e. M) into

typed ones (i.e. tM). For this, we consider a message

type transformation function MTr = M → tM.

Thus, the transformation of a message term t ∈ M,

with t1, …, tn ∈ M and f ∈ F, into a typed message

term is defined as:

()





















=tMTr

For the transformation of a role specification into a

typed role specification we use a role transformation

function RTr = RoleSpec → TRoleSpec.

As in the case of the message transformation, we

define a role transformation function for ρ, ρ1, ρ2 ∈

RoleSpec, t ∈ M, i ∈ I and r, r′ ∈ R as:

()








=ρRTr

4 Analyzing typed security protocols
To be able to analyze security protocols against

structural attacks, we must first formalize the

considered attacks (replay and basic type flaw) using

our typed framework. This is done in section 4.1. In

section 4.2 we model and analyze the key distribution

part from the Neuman-Stubblebine (N-S) [12]

authentication protocol.

4.1 Attack formalization
In this section we formalize structural attacks using

our typed specification of security protocols. For

simplicity reasons, we use the term message to denote a

typed message and the term protocol specification to

denote a typed protocol specification.

To discover replay attacks in the protocol

specification of a role r ∈ R , we first construct the set

of all “send” messages having any source role r′∈R

and a destination role r′′, such that r′′∈R- {r}:

allsentMsgExcluding(r) = (17)

{ }

U
rRrRr −∈′′∈′ ,

{t | sendi(r′, r′′, t)∈TProtSpec(r′) }

Similarly, we define the set of all “recv” messages

given in the protocol specification for the same r ∈ R ,

having any source role r′∈R , as:

recvdMsg(r) = (18)

 U
Rr ∈′

{t | recvi(r′, r, t)∈TProtSpec(r) }

Having the set of all messages in the protocol

specification not destined for r, and the set of messages

given in the specification of r that may be received by

r, to determine if role r is opened to replay attacks, we

must only find a message or sub-message in recvdMsg

that is equal to a message or sub-message in

allsentMsgExcluding. Formally, we use the REPLAY

predicate to express the fact that a role r ∈ R is opened

to replay attacks:

REPLAY(r) ⇔ (19)

 ∃tr∈recvdMsg(r), ts∈allsentMsgExcluding(r), t∈P (tr), t′∈P (ts)

 t = t′

Because basic type flaw attacks result from

accepted encrypted messages that contain keys (for

r, if t ≡ r ∈ R

n, if t ≡ n ∈ N

k, if t ≡ k ∈ M

sh A B, if t ≡ sh A B ∈ M

pk A, if t ≡ pk A ∈ M

sk A, if t ≡ sk A ∈ M

f (MTr(t1), …, MTr(tn)), if t ≡ f (t1, …, tn)

(MTr(t1), MTr(t2)), if t ≡ (t1, t2)

{MTr(t1)}MTr(
2t), if t ≡ {t1}

2t

(RTr(ρ1),RTr(ρ2)), if ρ ≡ (ρ1, ρ2)

tsendi(r, r′, MTr(t)), if ρ ≡ sendi(r, r′, t)
trecvi(r, r′, MTr(t)), if ρ ≡ recvi(r, r′, t)

(15)

(16)

example session keys generated by a third party

server), we can model these attacks using the same line

of thought as in the case of replay attacks.

To determine if a role r ∈ R is opened to basic type

flaw attacks, we first construct the set of all “send”

messages specified in the protocol for all the involved

roles. We do not remove the messages destined for role

r (as was the case of modeling replay attacks), because

these messages may be reused in different contexts,

thus generating themselves basic type flaw attacks.

allsentMsg = (20)

 U
Rrr ∈′′′,

{t | sendi(r′, r′′, t)∈TProtSpec(r′)}

Hence, we use the BASIC-TYPEFLAW predicate to

denote that a role r ∈ R is opened to basic type flaw

attacks:

BASIC-TYPEFLAW(r) ⇔ (21)

 ∃tr∈recvdMsg(r), ts∈allsentMsg, t∈P (tr), t′∈P (ts) ∧

 ∃t1, t2, t3 ⊂ t, t′1, t′2 ⊂ t′, f ∈ t, bt ∈ τ-{k}

 t = {t1, k, t2}f(
3t) ∧ t′ = {t′1, bt, t′2}f (

3t) ∧

 | t1 | = | t′1 | ∧ | t2 | = | t′2 |

where recvdMsg(r) is the set defined in equation (18),

the ⊂ operator is used to denote that a message term is

a sub-term of another message term and the |t| operator

returns the length of a message term t. The encryption

function f and the encryption key t3 are the same for the

sent and received messages.

4.2 Analyzing the N-S security protocol
Using the structures described in section 3.2, the

regular protocol specification of the N-S protocol

becomes:

NS(A)={send1(A, B, (A, Na)),

 recv2(S, A, ({B, Na, k, Nt}sh A S,

 {A, k, Nt}sh B S, Nb)),

 send3(A, B, ({A, k, Nt}sh B S, {Nb}k))}

NS(B)={recv1(A, B, (A, Na)),

 send2(B, S, (B, {A, Na, Nt}sh B S, Nb)),

 recv3(A, B, ({A, k, Nt}sh B S, {Nb}k))}

NS(S)={recv1(B, S, (B, {A, Na, Nt}sh B S, Nb)),

 send2(S, A, ({B, Na, k, Nt}sh A S,

 {A, k, Nt}sh B S, Nb))}

By applying the role transformation function from

section 3.4, we have the following typed specification:

RTr(NS(A))={tsend1(A, B, (r, n)),

 trecv2(S, A, ({r, n, k, n}sh A S,

 {r, k, n}sh B S, n)),

 tsend3(A, B, ({r, k, n}sh B S, {n}k))}

RTr(NS(B))={trecv1(A, B, (r, n)),

 tsend2(B, S, (r, {r, n, n}sh B S, n)),

 trecv3(A, B, ({r, k, n}sh B S, {n}k))}

RTr(NS(S))={recv1(B, S, (r, {r, n, n}sh B S, n)),

 send2(S, A, ({r, n, k, n}sh A S,

 {r, k, n}sh B S, n))}

Analyzing this typed specification for role B, the

REPLAY(B) predicate will hold, for example, for

trecv1(A, B, (r, n)) where the (r, n) message may be

extracted from the tsend2(B, S, (r, {r, n, n}sh B S, n))

message. This leads to a simple replay attack that is

created by sending to B the message that himself has

generated.

Because of message structure similarities, the

BASIC-TYPEFLAW(B) predicate will also hold in

many cases. For example, in trecv3(A, B, ({r, k, n}sh B S,

{n}k)), the {r, k, n}sh B S term may be generated in

tsend2(B, S, (r, {r, n, n}sh B S, n)), thus the first nonce

that is sent in the {r, n, n}sh B S message term becomes

the key.

5 Related work

Until now, typing has been used in the literature for

checking secrecy violations in [2, 5, 6] (by verifying if

a message component marked as having the type

private is made public), for controlling network

message flow in [14], for defending against type flaw

attacks in [7] or for state space reduction in [9] (by

using message typing).

Although the specification of security protocols in

the “Typed MSR” [9] model allows the definition of

types for message components, it is not syntactically

typed as is the case of our model. Because we create a

specification based only on message types, a simple

syntactical search may be conducted to find replay or

type flaw attacks.

In [15], a “zipper” (comparison) procedure is

presented for detecting type flaws. The level of

abstraction used is much lower than ours, because of

the physical length of messages that is also included in

the model. This is why, the procedure can only be used

as described in [15] and cannot be used by existing

protocol verification tools, as is the case of our model.

6 Conclusions and future work
This paper presented a typed specification for security

protocols that may be used by existing protocol

verification methods and tools as an input model.

The proposed abstract model captures the message

structure of security protocols using types, hence not

considering the actual message component values as

regular specifications do. This is why we are able to

conduct simple syntactical analysis on security

protocols for detecting replay or type flaw attacks.

Because we construct the abstract model by simply

replacing the message terms with their corresponding

types, thus not destroying the data flow or message

term ordering, the typed protocol model may be

verified by existing tools, like the model checking tool

Maude [16, 17].

Although our specification allows for a rapid

syntactical analysis of security protocols against replay

attacks and basic type flaw attacks, it is not yet

equipped with enough formal power (message term

reduction techniques, role knowledge specification) to

allow a syntactical analysis for all type flaw attacks.

This is why we consider this as a remaining future

work by the end of which we will also be able to

analyze multiple protocol interactions [7, 8] by using a

simple syntactical message comparison.

Refrences:

[1] Clarke, E. M., Grumberg, O., and Peled, D, Model

checking, MIT Press, 1999.

[2] M. Abadi, Secrecy by typing in security protocols,

Journal of the ACM, 46(5), 1999, pp 749-786.

[3] Lawrence C. Paulson, The inductive approach to

verifying cryptographic protocols, Journal of Computer

Science, 1998, pp. 85-128.

[4] Bruno Blanchet, Automatic Verification of

Cryptographic Protocols: A Logic Programming

Approach, In 5
th
 ACM-SIGPLAN International

Conference on Principles and Practice of Declarative

Programming, Sweden, August 2003, pp. 1-3.

[5] M. Abadi and A. D. Gordon, A calculus for

cryptographic protocols: The spi calculus, Information

and Computation, 148(1), 1999, pp 1-70.

[6] M. Abadi, Bruno Blanchet, Secrecy types for

Asymmetric Communication, Theor. Comput. Sci.,

3(298), 2003, pp 387-415.

[7] Cas J. F. Cremers, Feasability of Multi-Protocol

Attacks, ARES, 2006, pp. 287-294.

[8] C.J.F. Cremers, Verification of multi-protocol

attacks, Computer Science Report CSR, Eindhoven

University of Technology, 2005, pp 5-10.

[9] I. Cervesato, Typed Multiset Rewriting

Specifications of Securiy Protocols, First Irish

Conference on the Mathematical Foundations of

Computer Science and Information Technology, 2000,

pp. 1-43.

[10] G. Hollestelle, Systematic Analysis of Attacks on

Security Protocols, Master’s Thesis, Technical

University of Eindhover, Department of Mathematics

and Computer Science, November 2005.

[11] J. Clark and J. Jacob, Attacking Authentication

Protocols, High Integrity Systems, 1(5), 1996, pp. 465-

474.

[12] B. Clifford Neuman and Stuart G. Stubblebine, A

note on the use of timestamps as nonces, Operating

Systems Review, 27(2), 1993, pp 10-14.

[13] Dolev, D., Yao, A., On the security of public key

protocols, IEEE Transactions on Information Theory,

IT-29, 1983, pp. 198-208.

[14] Guoqiang Li, Bochao Liu, Li Xin, Mizuhito

Ogawa, Type-directed Trace Analysis of Security

Protocols in Process Calculus, JSSST, 2005, available

at: nue.riec.tohoku.ac.jp/jssst2005/papers/05025.pdf

[15] Catherine Meadows, Identifying potential type

confusion in authenticated messages, 16th IEEE

Computer Security Foundations Workshop (CSFW'03),

2002, p. 62.

[16] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-

Oliet, J. Mesequer, and C. Talcott, Maude Manual

Version 2.1, 2004, http://maude.cs.uiuc.edu.

[17] Peter Csaba Olveczky, Formal Modeling and

Analysis of Distributed Systems in Maude, Lecture

Notes, University of Oslo, 2005.

[18] Simon Thompson, Type Theory and Functional

Programming, Addison-Wesley, 1991.

[19] Security Protocol Open Repository, available at:

www.lsv.ens-cachan.fr/spore.

[20] Yafen Li, Wuu Yang, Ching-Wei Huang, On

Preventing Type Flaw Attacks on Security Protocols

With a Simplified Tagging Scheme, J. Inf. Sci. Eng.,

21(1), 2005, pp. 59-84.

