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Abstract – Security protocol analysis techniques are today mature enough to verify multiple properties of security 

protocols (correctness, secrecy, authentication). However, because security protocols are growing each day and 

more complex situations arise (like multi-protocol environments), we consider that the analysis process should be 

simplified by creating an abstract model for security protocols that captures the essence of the property that is 

checked. Therefore, in this paper we propose such an abstract model, based on message component types (session 

keys, nonces, participants), that captures the structure of security protocol messages, thus simplifying the analysis 

against attacks based on message similarities, that we call “structural attacks”. The mentioned attacks are 

formalized using the proposed typed framework, which is validated by modeling and analyzing the Neuman-

Stubblebine authentication protocol. 
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1  Introduction 
Security protocols, by definition, are protocols that use 

cryptographic primitives, which allow the involved 

parties to exchange some secret information (i.e. shared 

key or secret data). These protocols have been 

intensively analyzed in the last few decades, mainly 

because with the expansion of the internet, existing 

security holes can now be exploited by malicious users. 

From the resulting protocol verification techniques, 

we identify three major approaches: model checking, 

theorem proving and static analysis. 

Model checking [1] deals with the analysis of an 

input model viewed as a finite set of states. The 

analysis starts from an initial state and, by applying 

state transition rules, it generates the whole state space. 

In every step, a desired property is checked until a state 

which violates that property is found. Because it can be 

fully automated, it requires little or no human 

interaction. A major drawback of this method is the 

state space explosion problem, as the number of states 

can become very large even when dealing with simple 

protocols. 

The second approach used in the process of 

protocol verification is theorem proving [3, 4]. Rather 

than dealing with a set of states, as in the previous 

method, this approach manipulates logical formulae. 

Thus, a protocol is viewed as a set of clauses 

predicating on participant capabilities and a set of 

inference rules for capturing the message flow between 

participants. Although theorem proving may deal with 

an unlimited number of protocol instances and with 

arbitrary complex data, the fact that it requires (expert) 

human intervention (to formulate inference rules, 

lemmas, theorems) makes it hard to use for the 

inexperienced user. 

Static analysis has been traditionally used in 

software analysis to create program abstractions for a 

simplified analysis. In the area of security protocols, 

static analysis has only been recently applied in [5, 6]. 

Here, participants are represented as processes and 

security properties are embodied in participant 

specification by means of annotations, having the form 

of typed messages, which restrict the data flow through 

these points. A major drawback of this approach is that 

it may find false errors because of the abstraction 

model that eliminates much of the actual data flow. 

The presented approaches have one major aspect in 

common: they all require an initial protocol 

specification. The above-presented methods are today 

mature enough to verify multiple properties of security 

protocols (correctness, secrecy, authentication). 



However, because protocols are growing each day and 

more complex situations arise, like multi-protocol 

environments [7, 8], new abstract specifications must 

be created to simplify the analysis. Thus, if a 

specification captures the essence of a certain attack, 

existing tools (that allow the integration of the model, 

like Maude [16, 17]) may find these attacks much 

faster.  

Therefore, we propose a typed specification model 

for structural analysis of security protocols that 

simplifies the analysis process undertaken by existing 

methods [1, 3, 5], by creating an abstract, simplified 

model of a security protocol. 

A protocol specification is based on the 

specification of participants that communicate by 

exchanging messages. A typed specification defines a 

protocol message as the set of its component types (i. e. 

participant types, key types). This results in an abstract 

modeling of security protocols by transforming the 

actual values from the regular specification to their 

corresponding types. 

Because the resulting model captures the structure 

of a security protocol, an analysis based on this model 

is called a structural analysis. Thus, by simply running 

a syntactical comparison of the component messages, 

we may find attacks resulting from message similarities 

that we call structural attacks. We identify two such 

attacks: replay attacks (re-use of generated messages in 

different contexts than the ones intended in the 

specification) and type confusion attacks (where a 

message type, for example a session key, may not be 

verified because of limited participant knowledge). 

The paper is structured as follows. In section 2 we 

define the protocol attacks that we consider having a 

structural source. We continue with section 3 where we 

model security protocols and our typed security 

protocol concepts using first order predicate logic [18]. 

In section 4 we formalize structural attacks and 

validate our framework by modeling and analyzing the 

key exchange part from the Neuman-Stubblebine [12] 

authentication protocol. We compare our work to 

related ones in section 5 and we finish with a 

conclusion and future work in section 6. 
 

 

2  Structural security protocol attacks 
In this section we present the main security protocol 

attacks we consider to have a message structural 

source: replay and type confusion (also known as type 

flaw) attacks [10, 11]. 

Because security protocol specifications may not 

be so familiar to the reader, in this section we use only 

a minimal notation, a more extended one being given in 

section 3. Thus, encryption will be denoted by the 

“{}Kab” construct, where Kab is the key. Also, 

protocol participants will be referred to as roles, 

denoted by capital letters (A, B, S).  

 

 

2.1  The Neuman-Stubblebine security protocol 
To exemplify a new protocol analysis technique, it is 

always good practice to use an already known protocol. 

This is why we have chosen the Neuman-Stubblebine 

[12] (N-S) authentication protocol, which has benefited 

from an exhaustive analysis over the years [19, 20]. 

In the next sections, we only provide a limited 

analysis of the key distribution part of the N-S 

protocol, which should be enough to give the reader a 

general idea about the severity of replay and type-flaw 

attacks. 

 

 
Figure 1. Key distribution part of the 

Neuman-Stubblebine authentication protocol 

 

The N-S protocol (Figure 1) is initiated by 

participant A by sending to participant B a message 

containing his name (A) and a nonce (i.e. “number once 

used”) Na. Receiving this message, B generates a new 

message that is sent to server S, containing his name 

(B), a message term encrypted with the shared key Kbs 

and a nonce Nb. 

By receiving a valid message from B (i.e. message 

2), the server knows that A wants to establish a session 

key with B, which he generates in the form of Kab. 

Then, he encrypts the session key in two different 

messages using Kas (the key that A shares with the 

server) and Kbs (the key that B shares with S) 

respectively. The messages are then sent to participant 

A along with the nonce generated by B. 



On receiving a valid message from the server (i.e. 

message 3), participant A, knowing his shared key 

(Kas), decrypts the message part meant for him, thus 

determining the session key. Then, he uses this key to 

encrypt the Nb nonce, which is sent to B along with the 

message part encrypted using Kbs. This final message 

informs B about the session key and ensures him that 

the key was generated by the third-party server and that 

another party (possibly A) is in the possession of the 

same key. 

 

 

2.2  Replay attacks 
The generalized definition of a replay attack is: the use 

of protocol generated messages in other contexts than 

the ones intended (provided in the specification), 

thereby fooling the honest participant(s) into accepting 

the messages as valid ones. 

 

 
Figure 2. Replay attack on the 

Neuman-Stubblebine authentication protocol 

 

The replay attack presented in Figure 2 involves 

two participants, A and B, and an intruder I(S) that 

intercepts and re-routes the messages sent to server S. 

An attack based on this configuration consists of 

resending the two message terms B and Nb to role B, 

thus fooling him that a session with himself must be 

generated. Although this looks like a harmless replay 

attack, if the effort on B to generate a new session 

(which may involve multiple server interaction, 

database communication) is high, then it may lead to a 

Denial of Service attack.  

In the presented example, the intruder uses B’s 

capabilities to generate nonces and valid messages (by 

simply replaying them), therefore B is said to act as an 

oracle [11] (because he always provides the correct 

answer). 

 

 

2.3  Type flaw attacks 
We say that a type flaw (i.e. type confusion) attack 

possibility arises when a component of a received 

message may be interpreted another way than it was 

intended by the source that created the message. This 

may happen because, for example, session keys 

generated by a third party server cannot be checked for 

validity by the receiving role. In this context, we 

identify two kinds of type flaws: basic type flaws and 

all type flaws. Thus, if a basic message component 

(which can not be further decomposed) is interpreted as 

another basic component, then we are dealing with a 

basic type flaw. If a message component (which has 

multiple basic components) is interpreted as a basic 

message component, then have an all type flaw. 

The security protocol model presented in section 3 

is only able to capture basic type flaws because all type 

flaws requires term reduction techniques that are 

considered to be part of a future work. 

 

 
Figure 3. Type flaw attack on the 

Neuman-Stubblebine authentication protocol 

 

An example of a basic type flaw attack is presented 

in figure 3, where I(A, B) denotes an intruder that is 

able to intercept messages sent to A and B and I(S) 

denotes the same intruder capable of intercepting 

messages sent to the server. In fact, the intruder has 

total control over the network, it can create new 

messages, it can compose and decompose messages, 

replay and delete messages. An intruder with these 

capabilities corresponds to the intruder model 

described in the Dolev-Yao security model [13]. 



Having unlimited access to the communication 

channel, the intruder intercepts message 1 sent by A to 

B, thus learning the nonce Na. After this, he forwards 

the received message to B. B then generates a new 

nonce (Nb) and a message encrypted with his shared 

key, which he both sends to the server, along side with 

his name. This message is also intercepted by the 

intruder, who thus learns Nb. 

In the original message exchange (Figure 1), B 

reaches final state when he receives a valid final 

message from A (i.e. message 4). To make participant 

B reach this state, the intruder sends message 2 (after 

creating a new encrypted part), intercepted from the 

same B, to B. Because of structural similarity and 

because B cannot check the validity of Kab, this is 

actually possible, leading to type confusion and 

acceptance of the new message as a valid one. Thus, 

the key that B thinks it shares with A becomes Na 

instead of Kab, which was in fact the intended one. 

 

 

3  Typed security protocol specification 
In this section we construct our typed model of security 

protocols using first order predicate logic [18]. We start 

by defining a few basic concepts and continue with the 

formalization of a regular protocol specification. Then, 

we define our typed specification of security protocols 

and provide transformation functions from the regular 

specification to our typed one. 

 

 

3.1  Basic concepts and considerations 

A system consists of a number of communicating 

agents. A security protocol describes the behavior of 

these agents also known as roles. Thus, specifying a 

security protocol is reduced to specifying the behavior 

of the roles involved in the protocol. 

Basic sets. The sets that form the foundation of our 

constructs are the following: R (denoting a set of roles, 

for example {A, B, C}, where A, B, C denote role 

names), N (denoting a set of nonces, for example {Na, 

Nb, Nc, Nt}, where Na is the nonce generated by role 

A, and so on, and Nt is the notation we use for 

timestamps considered to have the same behavior as a 

nonce), and F  (denoting a set of function names, for 

example sym, representing symmetric encryption, and 

asym, representing asymmetric encryption). 

Cryptographic primitives. The security protocol 

specifications that we consider use an idealized, black-

box view on cryptographic primitives (i.e. 

mathematical constructs like encryption, decryption). 

This means that the primitives are considered to be 

implemented using flawless algorithms that guarantee 

“perfect encryption”. The algorithm types we consider 

are symmetric (i.e. the same key is used for encrypting 

and decrypting data) and asymmetric (i.e. a public key 

is used for encryption and a private key for decryption). 

Communication model. The communication model 

corresponds to the “Dolev-Yao” security model [13] 

where any role can read a message from the 

communication channel and any role can send a 

message to the channel. For a message to be considered 

readable it must correspond to a certain blueprint, taken 

from the role specification. 

 

 

3.2  Security protocol specification 

Because roles communicate by exchanging messages, 

to be able to define a role specification we have to 

define what a message is. To do this, first we define the 

encryption keys that appear in security protocol 

messages using the following grammar: 

 

Keys: K ::= k (session key)        (1) 

          | sh A B (shared permanent key) 

          | pk A (public key) 

          | sk A (secret key) 

 

We use the symbol K to range over keys that 

appear in messages. In the above definition, the role 

names are not restricted to only A and B. If other roles 

appear in a specification, they may also be used. 

The definition of a security protocol message (or 

simply a message) introduces constructors for 

encryption (denoted by curly brackets) and pairing. We 

expand on these after the definition. Thus, a Message, 

or more appropriately a Message Term, written as M, is 

defined as: 

 

 Message Term: M ::= . | R | N | K |                          (2) 

 F (M) | (M, M) | {M}M 
 

To denote an empty message term, we use the “.” 

symbol. The type of the encryption algorithm 

(symmetric or asymmetric) and the key that is used are 

denoted by a subscript placed after the “{}” brackets. If 

the subscript is not a function of F, then the encryption 

is considered to be symmetric. Also, if the context 

allows us (does not lead to confusions) we omit the 

specification of the function, leaving only the term 



representing the encryption key, thus denoting a 

symmetric encryption. 

Example message constructions having the same 

meaning are {A}sym(k) and {A}k: the name of the role A 

is encrypted with session key k using a symmetric 

algorithm. However, not the same thing may be said 

about these constructs: {A}asym(k) and {A}k. In the first 

case, k is used in an asymmetric encryption, while in 

the second case it is used in a symmetric encryption. 

Because we have to distinguish between sent and 

received messages, we define two predicates send, recv 

: R × R × M to denote the sending and receiving of a 

message having a source role and a destination role. 

The composition and decomposition of messages are 

defined inductively by the following rules: 

 

send(r, r′, t1) ∧ send(r, r′, t2) ⇔          (3) 

 send(r, r′, (t1, t2)),     

send(r, r′, t) ∧ send(r, r′, f (t1, …, tn)) ⇔        (4) 

send(r, r′, (t, f (t1, …, tn))), 

recv(r, r′, t1) ∧ recv(r, r′, t2) ⇔          (5) 

recv(r, r′, (t1, t2))        

recv(r, r′, t) ∧ recv(r, r′, f (t1, …, tn)) ⇔         (6) 

            recv(r, r′, (t, f (t1, …, tn))), 

 

where r, r′ ∈ R , t, t1, …, tn ∈ M and f  ∈ F. r and r′ are 

used to denote a source role and a destination role, 

respectively. 

Thus, we can define a role specification as a set of 

send and recv predicates, using an index label i ∈ I to 

differentiate between similar occurrences: 

 

RoleSpec = {sendi(r, r′, t), recvi(r, r′, t) |        (7) 

            t ∈ M, i ∈ I, r, r′ ∈ R } 

 

Having defined the role specification, we can 

define a protocol specification describing the behavior 

of a number of roles, as the function ProtSpec=R → 

RoleSpec. 

An example specification of a role in a 

NonceExchange protocol is: 

 

NonceExchange(A) = {send1(A, B, (A, {A, Na}sh A B)),  

          recv2(B, A, ({B, Na, Nb}sh A B))}, 

 

where A and B are the participating roles, Na is the 

nonce generated by A, Nb is the nonce generated by B 

and sh A B is the shared key used by A and B to encrypt 

the exchanged messages. 

 

 

3.3  Typed security protocol specification 

Our typed specification is based on the Basic Types 

defined by the following grammar: 

 

BasicTypes: τ ::= r (role type)         (8) 

| n (nonce type) 

| k (session key type) 

| sh A B (shared key type) 

| pk A (public key type) 

| sk A (secret key type) 

 

Comparing the definition of a Message from 

section 3.2 with the previous definition, it can be seen 

that the regular (non-italic) written letters stand for the 

types corresponding to the components of a Message. 

We use the symbol τ to denote all the possible basic 

types. 

A Typed Message, or Typed Message Term, written 

as tM, is constructed using the basic types τ and has the 

following definition (using the “.” symbol to denote an 

empty typed message term): 

 

Typed Message Term: tM ::= . | τ | F (tM) |           (9) 

      (tM, tM) | {tM}tM 
 

The definition of a typed role specification uses the 

tsend, trecv : R  × R  × tM predicates to express sending 

and receiving of Typed Messages from a source role to 

a destination role and it is similar to the definition of a 

role specification from the previous section: 

 

TRoleSpec = {tsendi(r, r′, t), trecvi(r, r′, t) |      (10) 

        t ∈ tM, i ∈ I, r, r′ ∈ R } 

 

The composition and decomposition rules for the 

typed messages are defined as: 

 

tsend(r, r′, t1) ∧ tsend(r, r′, t2) ⇔       (11) 

                tsend(r, r′, (t1, t2)), 

tsend(r, r′, t) ∧ tsend(r, r′, f (t1, …, tn)) ⇔      (12) 

tsend(r, r′, (t, f (t1, …, tn))), 

trecv(r, r′, t1) ∧ trecv(r, r′, t2) ⇔       (13) 

   trecv(r, r′, (t1, t2)), 

trecv(r, r′, t) ∧ trecv(r, r′, f (t1, …, tn)) ⇔      (14) 

   trecv(r, r′, (t, f (t1, …, tn))), 

 

where r, r′ ∈ R , t, t1, …, tn ∈ tM and f  ∈ F. 



Using the same symmetry of thought, as was the 

case of the TRoleSpec, we define a typed security 

protocol specification as the function TProtSpec=R → 

TRoleSpec. 

An example modeling of a hypothetical 

KeyGeneration protocol for a role A is: 

 

KeyGeneration(A) = {tsend1(A, B, (r, r, {r, n}sh A B)), 

      trecv2(B, A, (r, {r, k, n}sh A B))}. 

 

 

3.4  Transformation 

Although we can model security protocols using the 

definition of typed protocol specification, as was the 

case of the KeyGeneration protocol example, to model 

existing protocols in our typed framework, we need a 

function that transforms untyped messages (i.e. M) into 

typed ones (i.e. tM). For this, we consider a message 

type transformation function MTr = M → tM. 

Thus, the transformation of a message term t ∈ M, 

with t1, …, tn ∈ M and f  ∈ F, into a typed message 

term is defined as: 

 

( )





















=tMTr

          

 

For the transformation of a role specification into a 

typed role specification we use a role transformation 

function RTr = RoleSpec → TRoleSpec. 

As in the case of the message transformation, we 

define a role transformation function for ρ, ρ1, ρ2 ∈ 

RoleSpec, t ∈ M, i ∈ I  and r, r′ ∈ R  as: 

 

( )








=ρRTr  

 

 

 

4  Analyzing typed security protocols 
To be able to analyze security protocols against 

structural attacks, we must first formalize the 

considered attacks (replay and basic type flaw) using 

our typed framework. This is done in section 4.1. In 

section 4.2 we model and analyze the key distribution 

part from the Neuman-Stubblebine (N-S) [12] 

authentication protocol.  

 

 

4.1  Attack formalization 
In this section we formalize structural attacks using 

our typed specification of security protocols. For 

simplicity reasons, we use the term message to denote a 

typed message and the term protocol specification to 

denote a typed protocol specification.  

To discover replay attacks in the protocol 

specification of a role r ∈ R , we first construct the set 

of all “send” messages having any source role r′∈R  

and a destination role r′′, such that r′′∈R- {r}: 

 

allsentMsgExcluding(r) =       (17) 

 
{ }

U
rRrRr −∈′′∈′ ,

{t | sendi(r′, r′′, t)∈TProtSpec( r′ ) } 

 

Similarly, we define the set of all “recv” messages 

given in the protocol specification for the same r ∈ R , 

having any source role r′∈R , as: 

 

recvdMsg(r) =         (18) 

      U
Rr ∈′

{t | recvi(r′, r, t)∈TProtSpec( r ) } 

 

Having the set of all messages in the protocol 

specification not destined for r, and the set of messages 

given in the specification of r that may be received by 

r, to determine if role r is opened to replay attacks, we 

must only find a message or sub-message in recvdMsg 

that is equal to a message or sub-message in 

allsentMsgExcluding. Formally, we use the REPLAY 

predicate to express the fact that a role r ∈ R  is opened 

to replay attacks: 

 

REPLAY(r) ⇔          (19) 

      ∃tr∈recvdMsg(r), ts∈allsentMsgExcluding(r), t∈P (tr), t′∈P (ts) 

      t = t′ 
 

Because basic type flaw attacks result from 

accepted encrypted messages that contain keys (for 

r,    if t ≡ r ∈ R 

n,   if t ≡ n ∈ N 

k,   if t ≡ k ∈ M 

sh A B,   if t ≡ sh A B ∈ M

pk A,   if t ≡ pk A ∈ M 

sk A,   if t ≡ sk A ∈ M 

f (MTr(t1), …, MTr(tn)), if t ≡ f (t1, …, tn) 

(MTr(t1), MTr(t2)),         if t ≡ (t1, t2) 

{MTr(t1)}MTr(
2t ),       if t ≡ {t1}

2t  

(RTr(ρ1),RTr(ρ2)),      if ρ ≡ (ρ1, ρ2) 

tsendi(r, r′, MTr(t) ),  if ρ ≡ sendi(r, r′, t) 
trecvi(r, r′, MTr(t) ),   if ρ ≡ recvi(r, r′, t) 

 

(15) 

(16) 



example session keys generated by a third party 

server), we can model these attacks using the same line 

of thought as in the case of replay attacks. 

To determine if a role r ∈ R  is opened to basic type 

flaw attacks, we first construct the set of all “send” 

messages specified in the protocol for all the involved 

roles. We do not remove the messages destined for role 

r (as was the case of modeling replay attacks), because 

these messages may be reused in different contexts, 

thus generating themselves basic type flaw attacks. 

 

allsentMsg =         (20) 

   U
Rrr ∈′′′,

{t | sendi(r′, r′′, t)∈TProtSpec( r′ )} 

 

Hence, we use the BASIC-TYPEFLAW predicate to 

denote that a role r ∈ R  is opened to basic type flaw 

attacks: 

 

BASIC-TYPEFLAW(r) ⇔       (21) 

     ∃tr∈recvdMsg(r), ts∈allsentMsg, t∈P (tr), t′∈P (ts) ∧ 

     ∃t1, t2, t3 ⊂ t, t′1, t′2 ⊂ t′, f ∈ t, bt ∈ τ-{k} 

            t = {t1, k, t2}f(
3t ) ∧ t′ = {t′1, bt, t′2}f (

3t ) ∧ 

         | t1 | = | t′1 | ∧ | t2 | = | t′2 | 
 

where recvdMsg(r) is the set defined in equation (18), 

the ⊂ operator is used to denote that a message term is 

a sub-term of another message term and the |t| operator 

returns the length of a message term t. The encryption 

function f and the encryption key t3 are the same for the 

sent and received messages. 

 

 

4.2 Analyzing the N-S security protocol 
Using the structures described in section 3.2, the 

regular protocol specification of the N-S protocol 

becomes: 

 

NS(A)={send1(A, B, (A, Na)),  

  recv2(S, A, ({B, Na, k, Nt}sh A S,  

                    {A, k, Nt}sh B S, Nb)),  

     send3(A, B, ({A, k, Nt}sh B S, {Nb}k))} 

 

NS(B)={recv1(A, B, (A, Na)), 

     send2(B, S, (B, {A, Na, Nt}sh B S, Nb)), 

     recv3(A, B, ({A, k, Nt}sh B S, {Nb}k))} 

 

NS(S)={recv1(B, S, (B, {A, Na, Nt}sh B S, Nb)), 

  send2(S, A, ({B, Na, k, Nt}sh A S,  

                    {A, k, Nt}sh B S, Nb))} 

By applying the role transformation function from 

section 3.4, we have the following typed specification: 

 

RTr(NS(A))={tsend1(A, B, (r, n)),  

   trecv2(S, A, ({r, n, k, n}sh A S,  

                   {r, k, n}sh B S, n)),  

      tsend3(A, B, ({r, k, n}sh B S, {n}k))} 

 

RTr(NS(B))={trecv1(A, B, (r, n)), 

      tsend2(B, S, (r, {r, n, n}sh B S, n)), 

  trecv3(A, B, ({r, k, n}sh B S, {n}k))} 

 

RTr(NS(S))={recv1(B, S, (r, {r, n, n}sh B S, n)), 

   send2(S, A, ({r, n, k, n}sh A S,  

                      {r, k, n}sh B S, n))} 

 

Analyzing this typed specification for role B, the 

REPLAY(B) predicate will hold, for example, for 

trecv1(A, B, (r, n)) where the (r, n) message may be 

extracted from the tsend2(B, S, (r, {r, n, n}sh B S, n)) 

message. This leads to a simple replay attack that is 

created by sending to B the message that himself has 

generated. 

Because of message structure similarities, the 

BASIC-TYPEFLAW(B) predicate will also hold in 

many cases. For example, in trecv3(A, B, ({r, k, n}sh B S, 

{n}k)), the {r, k, n}sh B S term may be generated in 

tsend2(B, S, (r, {r, n, n}sh B S, n)), thus the first nonce 

that is sent in the {r, n, n}sh B S message term becomes 

the key. 

 

 

5  Related work 

Until now, typing has been used in the literature for 

checking secrecy violations in [2, 5, 6] (by verifying if 

a message component marked as having the type 

private is made public), for controlling network 

message flow in [14], for defending against type flaw 

attacks in [7] or for state space reduction in [9] (by 

using message typing). 

Although the specification of security protocols in 

the “Typed MSR” [9] model allows the definition of 

types for message components, it is not syntactically 

typed as is the case of our model. Because we create a 

specification based only on message types, a simple 

syntactical search may be conducted to find replay or 

type flaw attacks. 

In [15], a “zipper” (comparison) procedure is 

presented for detecting type flaws. The level of 



abstraction used is much lower than ours, because of 

the physical length of messages that is also included in 

the model. This is why, the procedure can only be used 

as described in [15] and cannot be used by existing 

protocol verification tools, as is the case of our model. 

 

 

6  Conclusions and future work 
This paper presented a typed specification for security 

protocols that may be used by existing protocol 

verification methods and tools as an input model. 

The proposed abstract model captures the message 

structure of security protocols using types, hence not 

considering the actual message component values as 

regular specifications do. This is why we are able to 

conduct simple syntactical analysis on security 

protocols for detecting replay or type flaw attacks. 

Because we construct the abstract model by simply 

replacing the message terms with their corresponding 

types, thus not destroying the data flow or message 

term ordering, the typed protocol model may be 

verified by existing tools, like the model checking tool 

Maude [16, 17]. 

Although our specification allows for a rapid 

syntactical analysis of security protocols against replay 

attacks and basic type flaw attacks, it is not yet 

equipped with enough formal power (message term 

reduction techniques, role knowledge specification) to 

allow a syntactical analysis for all type flaw attacks. 

This is why we consider this as a remaining future 

work by the end of which we will also be able to 

analyze multiple protocol interactions [7, 8] by using a 

simple syntactical message comparison. 
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