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Abstract—The Smart Grid is a complex cyber-physical system
that is evolving rapidly from a relatively isolated to an open and
diverse environment. Within this context, enhancing the security
of the future Smart Grid becomes a major priority. In this
paper we introduce the use of data fusion for automated decision
making in cyber-physical systems such as the Smart Grid. One of
the most important applications of decision making is in the field
of anomaly detection. This can enable the detection of attacks in
cyber-physical systems without requiring a complete description
of the physical process. The novelty of our approach is that it
combines reports of various cyber and physical sensors, rather
than focusing on either one single metric, or one singe realm, as
was the case of similar techniques. Based on the proposed ar-
chitecture we implement a new cyber-physical anomaly detection
system. We show that data fusion is much more effective if it
combines both cyber and physical realms, rather than focusing
on the two realms separately.

Index Terms—Cyber-Physical systems, Smart Grid, data fu-
sion, anomaly detection systems.

I. INTRODUCTION

The Smart Grid is a complex cyber-physical system that
is evolving rapidly from a relatively isolated to an open and
diverse environment. The adoption of Information and Com-
munication Technologies (ICT) has led to cost optimization
as well as greater efficiency, flexibility and interoperability
between components. It is expected that Supervisory Control
And Data Acquisition (SCADA) systems will provide the
communications architecture for substation and distribution
automation, advanced metering and home area networking
applications for the future Smart Grid [1]. This will expose
many challenging problems in the security of Smart Grid
as current SCADA systems are exposed to significant cyber-
threats; a fact that has been highlighted by many studies [2],
[3]. For example, the recently discovered Stuxnet worm [4] is
the first malware that is specifically designed to attack SCADA
systems. Its ability to reprogram the logic of control hardware
in order to alter physical processes demonstrated how powerful
such threats can be; it has served as a wakeup call for the
international security community.

Within this context, enhancing the security of the future
Smart Grid becomes a major priority. Consequently, we find
a growing need for tools and methods that identify possible
security issues in the architecture of the future Smart Grid.
In this paper we support this direction by introducing the

use of data fusion for automated decision making in cyber-
physical systems such as the Smart Grid. One of the most
important applications of decision making is in the field of
anomaly detection. This can enable the detection of attacks in
cyber-physical systems without requiring a complete descrip-
tion of the physical process. Other applications range from
modeling the behavior of plant operators to cyber-physical
Intrusion Detection Systems (IDS). In our previous work [7]
we have shown that data fusion can be successfully applied to
the implementation of Distributed Denial of Service (DDoS)
detection systems. This paper extends our previous work with
elements from the physical realm and proposes an architecture
to support decision making in complex cyber-physical systems
such as the Smart Grid.

The mathematical foundation for the data fusion process is
provided by the Dempster-Shafer “Theory of Evidence” (D-
S). D-S enables the combination of evidence generated from
multiple sensors, e.g. basic detection elements. Each sensor
monitors, detects and reports its own perspective (belief) of
the observed cyber and/or physical attributes. The beliefs
of several sensors are then combined (fused) in order to
provide a unified view of the system state. Sensors act as thin
autonomous agents which collaborate by sharing their beliefs
about the observed attributes. From our perspective, the cyber-
physical system is seen as having a stochastic behavior without
assuming any underlying functional model. The attempt to
infer the unknown state of the system is based on knowledge
reported by sensors, that may have been acquired based
on totally different criteria. Possible sources of information
are signature-based IDS, custom DDoS detection programs,
control hardware (e.g. Programmable Logical Controllers -
PLCs) or physical sensors.

The novelty of our approach is that it combines reports
of various cyber and physical sensors, rather than focusing
on either one single metric, or one singe realm, as was the
case of similar techniques. Moreover, based on the proposed
architecture we implement a new cyber-physical anomaly
detection system. We show that data fusion is much more
effective if it combines both cyber and physical realms, rather
than focusing on the two realms separately.

The paper is structured as follows. After a short overview
of related works in Section II and of the Dempster-Shafer
“Theory of Evidence” in Section III, the proposed architecture



is presented in Section IV. Based on this architecture we
propose a new Anomaly Detection System in Section V and
we conclude in Section VI.

II. RELATED WORK

We begin by mentioning the work of Svendsen and
Wolthusen [11] that use an explicit model of a SCADA system
for anomaly detection. The detection process is enhanced by
using feedback control theory to predict future values and
ultimately detect physical anomalies in the system. A similar
approach has been developed by Cárdenas, et al. [12], where
a model of a chemical plant and feedback control loops were
used to predict the state of the physical process and to detect
attacks against the system. The main disadvantage of these
approaches is the requirement of a complete model for the
physical process. In contrast, our approach does not require
such a model and it can be used not only on physical systems
but also on cyber-physical systems.

In our previous work [7] we have also experimented with
the Dempster-Shafer “Theory of Evidence” to develop an
Intrusion Detection System for cyber systems. The proposed
architecture monitored parameters such as SYN, UDP and
ICMP packets but also received regular reports on network
traffic from switches and routers. This paper is an extension
of our previous work in [7] and it proposes data fusion
for cyber-physical systems. Another approach that monitors
cyber parameters has been proposed by Nai Fovino, et al.
[14], where the authors defined a set of rules to describe the
Modbus/DNP3 commands that can cause the system to go into
a critical state. The proposed approach can effectively detect
anomalies from the cyber realm (e.g. invalid Modbus/DNP3
packets), however, it does not monitor the physical realm.
Consequently, physical anomalies that have different causes
than Modbus/DNP3 packets can not be detected.

Finally, we mention an approach that focuses on cyber
and physical realms, proposed by Zimmer, et al. [13]. The
main assumption of the authors is that the system consists of
hardware running real-time Operating Systems (OSs) where
the execution of applications can be estimated at design time.
Zimmer, et al. propose to enhance the OS with instrumentation
mechanisms to detect anomalies in the system based on
application execution timings. Although this procedure can be
effective for real-time OSs and malware that is not designed
to overwrite the OS kernel, it can not detect much more
sophisticated attacks such as the recently reported Stuxnet
that was able to completely rewrite the control logic code.
In contrast, our approach is not linked to a specific hardware
or software and is able to detect anomalies caused by much
more sophisticated attacks.

III. DEMPSTER-SHAFER THEORY OF EVIDENCE

Dempster-Shafer’s “Theory of Evidence” can be considered
an extension of Bayesian inference. There are many different
ways to interpret the basic mathematical formulations of the
theory that was introduced by Shafer in 1976 [8]. It can
be viewed either from a probabilistic or an axiomatic point

of view and all these approaches are concisely surveyed in
[9]. Besides the different theoretical approaches and inter-
pretations, all of them boil down to the same mathematical
formulas. The “Theory of Evidence” has been analyzed in
the fields of statistical inference, diagnostics, risk analysis
and decision analysis. Our methods and notations are mostly
inspired from the field of “Diagnostics” [10].

Let us have a set of possible states of a system
θ1, θ2, ..., θN ∈ Θ, which are mutually exclusive and complete
(exhaustive). The set Θ is often called the frame of discern-
ment. We will call hypotheses Hi subsets of Θ, in other words
elements of the powerset 2Θ. Our goal is to infer the true
system state without having an explicit model of the system,
just based on some evidence (measurements) E1, ..., EM . Such
evidence can be considered as hint (with some uncertainty)
toward some system state. Based on one evidence Ej we
assign a probability that it infers a certain hypothesis Hj . A
basic probability assignment (bpa) is a mass function m which
assigns beliefs in a hypothesis or as Shafer stated “the measure
of belief that is committed exactly to H” [8]:

m : 2Θ → [0, 1] (1)

This membership function m has to satisfy the following
conditions:

m(∅) = 0 and m(H) ≥ 0,∀H ⊆ Θ and (2)∑
H⊆Θ

m(H) = 1

At this point we have to underline the flexibility and
advantages of this theory in contrast to the Bayesian approach,
where we can only assign probabilities on single elements of
Θ and not on elements of the powerset of the possible states.
This theory gives us the opportunity to model uncertainty and
the fact that some observations can distinguish between some
system states, while they might not be able to provide any hints
about others. For example, we might know that an evidence
points to hypothesis H = θ1, θ2 with a high probability but
on the same time it might provide no information (complete
ignorance) whether the system is in θ1 or θ2. Furthermore it is
crucial that the “Theory of Evidence” calculates the probability
that the evidence supports a hypothesis rather than calculating
the probability of the hypothesis itself (like the traditional
probabilistic approach).

We define Bel as a belief function related to a hypothesis
H:

Bel(H) =
∑
B⊆H

m(B) (3)

This definition says intuitively that a portion of belief
committed to a hypothesis B must also be committed to any
other hypothesis that it implies, i.e. to any H ⊇ B. A Belief
function has the following properties:

Bel(∅) = 0 and Bel(Θ) = 1 (4)



The Plausibility of H is defined as:

Pl(H) =
∑

B∩H 6=∅

m(B) (5)

and can be correlated to the doubt in the hypothesis H:

Doubt(H) = Bel(Hc) = 1− Pl(H) (6)

where Hc is the complement of H . Intuitively, this relation
means that the less doubt we have in a hypothesis H the
more plausible it is. Generally we can characterize Bel(H)
as a quantitative measure of all our supportive evidence and
Pl(H) as a measure of how incompatible our evidence is with
H in terms of doubt (refuting evidence). The true belief in H
lies in the interval [Bel(H), P l(H)]. Our degree of ignorance
is represented by the difference Bel(H)− Pl(H).

The second important element of Dempster-Shafer theory is
that it provides a rule to combine independent evidence E1, E2

into a single more informative hint:

m12(H) =

∑
B∩C=H m1(B)m2(C)∑
B∩C 6=∅m1(B)m2(C)

(7)

Based on this formula we can combine our observations
to infer the system state based on the values of belief and
plausibility functions. In the same way we can incorporate
new evidence and update our beliefs as we acquire new
knowledge through observations. “Theory of Evidence” makes
the distinction between uncertainty and ignorance, so it is a
very useful way to reason with uncertainty based on incom-
plete and possibly contradictory information extracted from a
stochastic environment. It does not need “a priori” knowledge
or probability distributions on the possible system states like
the Bayesian approach and as such it is mostly useful when
we do not have a model for our system. In comparison with
other inference processes, like first order logic which assumes
complete and consistent knowledge and exhibits monotonicity
or probability theory which requires knowledge in terms of
probability distributions, the “Theory of Evidence” has a
definite advantage in a vague and unknown environment.

The “Theory of Evidence” from a computational point of
view is in worst case exponential, because Dempster’s rule of
combination (Eq. 7) requires to find all pairs of sets B,C such
that B∩C = H which is o(2|Θ|−|H|×2|Θ|−|H|). Thus it may
be hard to compute in the general case, although some efficient
algorithms for fast computation exist. Nevertheless for many
practical applications with few focal elements, an exhaustive
approach is still feasible.

IV. PROPOSED SYSTEM ARCHITECTURE

Based on the Dempster-Shafer “Theory of Evidence” we
propose a novel architecture to enable decision making in
cyber-physical systems. The proposed architecture, depicted in
Fig. 1, illustrates the collection of data from both the physical
and cyber realms. The system fuses the knowledge that is
collected from the reports of various sensors in order to infer
the state of the system. One important aspect that should be
emphasized is that our sensors do not only collect data, but

they also provide a first level of detection. Their outputs are
translated to basic probability assignments which are fused by
the Dempster-Shafer inference engine.

As in any data fusion system, the performance of the im-
plementation depends on the selected sensors. In our previous
work [7] we have focused on a DDoS system where we
have identified several sensor types that could be used for the
cyber realm, such as: TCP-SYN packet monitoring sensors;
UDP and ICMP packet monitoring sensors; and router traffic
monitoring sensors. For the physical realm we can expand
the list with sensors monitoring physical parameters, such as:
pressure sensors; temperature sensors; liquid level sensors;
and valve positions. Most importantly, the flexibility of the
“Theory of Evidence” allows engineers to expand this list with
other application-specific sensors.

We use Θ to denote the set of all possible states of the
system, also known as the Frame of Discernment in the
terminology of the “Theory of Evidence”. Each sensor has
the ability to detect a specific set of attacks which can be
expressed by defining a mass function m for 2 possible sets:
• the set H of states that the sensor can recognize or is

sensitive to, for which m(H) denotes the sensor’s belief
in the states from H;

• the set Θ as previously defined, for which m(Θ) denotes
the degree of uncertainty associated to this sensor.

It follows from equation 2 that m(H) +m(Θ) = 1. Based
on these assumptions engineers can use the modeling power of
“Theory of Evidence” to include expert knowledge about each
sensors’ detection ability. Fine-tuning each sensor and trans-
lating their measurements to ’basic probability assignments’
(bpa’s) is not trivial and it might require several trials to be able
to express beliefs about the state of the system. Nevertheless,
as stated in our previous work [7], administrators can bypass
this problem by using a supervised learning approach and
inserting a minimal neural network at the sensor level.

A simple guideline to help engineers define individual m-
values is shown in Fig. 2. The intuition behind this guideline is
that although going over and under certain thresholds leads us
towards a quite certain decision, in the interval between these
low and high thresholds our beliefs should be treated with
an increased uncertainty. Fig. 2 shows two basic probability
assignment possibilities. Fig. 2 (a) defines one threshold
interval ([Tlow, Thigh]) and can be applied in scenarios such
as TCP-SYN-flooding attacks, where an increasing number
of SYN-requests can lead to a DoS attack. In this case the
level of uncertainty given by m(Θ) increases in between the
two thresholds, denoting the sensor’s uncertainty related to
the value of m(H). Fig. 2 (b) defines two threshold intervals
([Tlow, Thigh] and [T ′low, T

′
high]) and can be applied in the

physical realm, where parameters are usually bound to an
interval (e.g. steam pressure, liquid level). In this case the
uncertainty appears in two different settings, as there are two
threshold intervals.

The main novelty of the proposed architecture is that it fuses
together the cyber and the physical realms to provide an overall
view of the system state. As shown later in the next section,
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the added value of this procedure is that even if one sensor
fails to report the state of the system, combined knowledge
gathered from other sensors can guide the operator to take a
decision.

V. TOWARDS A NEW CYBER-PHYSICAL ANOMALY
DETECTION SYSTEM

In this section we present a new anomaly detection system
(ADS) for cyber-physical systems, based on the proposed
system architecture. The ADS monitors parameters from both
the cyber and the physical realms. From the cyber realm
it monitors parameters such as TCP-SYN requests, UDP
traffic, ICMP traffic and Modbus packet traffic, while from the
physical realm it monitors three parameters of a Boiling Water
Power Plant: boiler steam pressure, water level and generated
electricity. The monitored physical parameters are the ones
found in the model of a 160MW oil-fired electric power plant
based on the Sydsvenska Kraft AB plant in Malmö, Sweden,

TABLE I: Sensors with hypothesis and monitored parameters

Sensor Hypothesis Monitored parameters

H1
1 ={CYBER-Anomaly} TCP-SYN requests,

Sensor 1 H2
1 ={PHYSICAL-Anomaly, NORMAL} UDP traffic and

H3
1 = Θ ICMP traffic

Sensor 2 H1
2 ={PHYSICAL-Anomaly} Modbus packet

H2
2 = Θ traffic

H1
3 ={PHYSICAL-Anomaly} Steam pressure,

Sensor 3 H2
3 ={CYBER-Anomaly, NORMAL} water level and

H3
3 = Θ generated electricity

developed by Bell and Åström [6].
In our simplified implementation we defined the following

system states: Θ ={CYBER-Anomaly, PHYSICAL-Anomaly,
NORMAL}. Based on the proposed guidelines for basic
probability assignments and several trial and error procedures
for tuning the system parameters we have designed 3 sensors,
depicted in Table I. The first sensor monitors three parameters
from the cyber realm, based on which it can detect a cyber
anomaly, but it can not differentiate between a physical
anomaly and a normal state of the system. The second sensor
is able to detect a physical anomaly by inspecting Modbus
packets, however, it is not able to say anything about the
state of the system if there is no anomaly related to Modbus
packets. Finally, the third sensor can clearly detect a physical
anomaly, but it can not detect a cyber anomaly, as it only
receives information from physical process sensors.

In the remaining of this section we show that one of the
main added values of our proposals is that even if one sensor
fails to detect a cyber or physical anomaly, combined knowl-
edge gathered from other sensors clearly indicates an increased
belief of an anomaly state. For this purpose we have developed
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a prototype of the proposed sensors and inference engine in
Matlab Simulink. One of the main reasons for choosing Matlab
Simulink was that implementations can benefit from all the
advantages of a well-established modeling tool. Moreover,
further developments can enable Simulink models to interact
in real time with other software components through Matlab
Real Time Workshop, as shown in our previous work [5].

The results from Fig. 3 (a) and (b) illustrate the detection
of a cyber anomaly, where we considered a detection interval
for SYN packets of [Tlow, Thigh] = [10, 100]. As shown
in Fig. 3 (a), we increased the number of SYN packets /
second from 20 to 60 in order to simulate a SYN flood
attack. The implemented engine is able to detect this anomaly
and classifies it as a CYBER-Anomaly, as shown in Fig. 3
(b). Going further, we also simulated an attack with Modbus
packets, by increasing the number of Modbus packets from
20 to 70, as shown in Fig. 4 (a). In this case we used the
same detection interval of [Tlow, Thigh] = [10, 100] and the
system was able to detect a PHYSICAL-Anomaly. Finally,
we simulated an attack on the physical process by increasing
the steam pressure from 120 kg/cm2 to 160 kg/cm2 and
later on decreasing it to 5 kg/cm2, as shown in Fig. 5
(a). We have used two steam pressure anomaly detection
intervals, one of [Tlow, Thigh] = [5, 50] and the other one
of [T ′low, T

′
high] = [100, 200]. By excessively increasing or

decreasing the pressure we simulate an attack on the physical
process. This anomaly is detected by the proposed system,
as shown in Fig. 5 (b). Here, the value of m(PHYSICAL-
Anomaly) exceeds the value of m(NORMAL) for the samples
where a physical anomaly is present.

These scenarios illustrated the functionality of the imple-
mented data fusion engine and the applicability of the pro-
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posed approach for cyber-physical anomaly detection. How-
ever, in our discussion we have not mentioned other factors
such as false positive or false negative detection rates because
our intention was only to illustrate one possible application
for the proposed architecture. The full implementation of an
entire ADS requires deeper analysis of sensor design and a
much more sophisticated sensor tuning, aspects that were not
the focus of this paper, but are considered to be further possible
developments.
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The previous scenarios have demonstrated the applicability
of our proposal, but they do not show the main advantage
of cyber-physical data fusion-based detection systems over
separate cyber and physical anomaly detection systems. For
this purpose we have considered two parameters: Modbus
packet count and steam pressure, with a detection threshold
of 0.45. The Modbus packet count is increased from 20 to
50, at the same time increasing the steam pressure from 100
kg/cm2 to 140 kg/cm2. As shown in Fig. 6, by using separate
threshold-based detections for the physical and cyber realms,
the detection engine concludes that there is no attack on the
system, although there are both cyber and physical anomalies
present in the system. In contrast, by using the proposed data
fusion engine, the evidence from the two realms accumulates,
leading to an increase in the value of m(PHYSICAL-Anomaly)
above the threshold. This example demonstrates the power of
cyber-physical data fusion and provides a clear motivation of
our proposal.

VI. CONCLUDING REMARKS

In this paper we have presented a new method to support
automated decision making in cyber-physical systems such as
the Smart Grid. The main novelty of the proposal is that it
combines reports of various cyber and physical sensors using
Dempster-Shafers’ “Theory of Evidence”. In our proposal
sensors act as autonomous agents that send periodic reports
to a central unit that fuses together evidence from the cyber
and physical realms to provide a unified view of the system.
The applicability of the approach has been demonstrated by the
development of a new Anomaly Detection System (ADS) in
Matlab Simulink. Simulation results show that one of the main
added values of our proposals is that even if one sensor fails
to detect a cyber of physical anomaly, combined knowledge
gathered from other sensors can indicate an increased belief
of an anomaly state. Nevertheless, further research must be
conducted in the direction of sensor design and parameter
tuning. For this purpose well-established methods from the

field of Neural Networks could also be considered.
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