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ABSTRACT

Shodan has been acknowledged as one of the most popular search engines available today, designed to crawl the Internet
and to index discovered services. This paper expands the features exposed by Shodan with advanced vulnerability
assessment capabilities embedded into a novel tool called ShoVAT. ShoVAT takes the output of traditional Shodan queries
and performs an in-depth analysis of service-specific data, i.e., service banners. It embodies specially crafted algorithms
which rely on novel in-memory data structures to automatically reconstruct Common Platform Enumeration (CPE) names
and to proficiently extract vulnerabilities from National Vulnerability Database (NVD). Compared to the state-of-the-art,
ShoVAT brings several novel and significant contributions, since it encompasses automated vulnerability identification
techniques, it can return highly accurate results with customized and even purposefully modified service banners, and
it supports historical service vulnerability analysis without the need to deploy additional monitoring infrastructures.
Experiments performed on 1501 services in twelve different institutions across different sectors revealed high accuracy
of results and a total of 3922 known vulnerabilities. Copyright c© 2014 John Wiley & Sons, Ltd.

KEYWORDS

vulnerability assessment, Shodan, internet of things (IoT), common platform enumeration (CPE), common vulnerability and exposure

(CVE), national vulnerability database (NVD)
∗Correspondence

N. Iorga Street, No. 1, Tg. Mureş, Mureş, Romania, 540088
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1. INTRODUCTION

Advancements in software, hardware and network con-
nectivity in general led to an exponential growth in the
number of devices connected to the Internet. In fact,
predictions indicate that more than 25 billion devices will
be connected to the Internet by 2015 and approximately 50
billion devices by 2020 [1]. At the same time each device
will expose a rich palette of remotely accessible services
ranging from typical Web and Email servers to customized
services providing, for instance, access to control devices
installed in a “Smart House” programme [2].

Nonetheless, this trend also brings new opportunities
to malicious actors by increasing their chances to identify
vulnerable Internet-facing services [3, 4]. These concerns
have been augmented by the development of search
engines capable to identify devices and services directly
connected to the Internet [5, 6, 7]. One of the most popular
search engines within this class is Shodan [7], designed to
crawl the Internet and to index all common services found

within a predefined list (currently reaching more than 80).
Its ability to search and index devices ranging from Web
cameras to industrial automation hardware [8], has made
from Shodan a powerful tool, but also “the scariest search
engine on the Internet”, as reported by a CNN article [9].

Shodan was launched in 2009 by programmer John
Matterly [7]. It is a computer search engine equipped
with a graphical user interface that can identify Internet-
facing devices and services. Shodan crawls the Internet
for available devices and services and stores the collected
data, namely IP address, port and service banner in a
database accessible via http://www.shodanhq.com
or via Shodan Application Programming Interface (Shodan
API). For each discovered service Shodan scans and stores
results repeatedly over time. This yields a time series of
results available for each service and accessible to security
experts for further processing and analysis.

Shodan is mainly intended for legitimate security
specialists to aid the identification of Internet-facing
services and devices and to improve security by limiting
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the degree of exposure. In light of these issues, in this
paper we propose Shodan-based Vulnerability Assessment
Tool (ShoVAT) to complement Shodan’s features with
advanced capabilities that enable identification of known
vulnerabilities in discovered services.

Essentially, ShoVAT takes the output of traditional
Shodan queries and performs an in-depth analysis of
service-specific data, e.g., service banners, in order to
identify software version numbers, product vendor, pro-
duct name, etc. By leveraging specially crafted heuristics
ShoVAT rebuilds Common Platform Enumeration (CPE)
names for each identified product and it extracts the list of
Common Vulnerability Entries (CVE) from National Vul-
nerability Database (NVD). Since Shodan also provides
historical data on indexed services, ShoVAT can explore
historically the degree of service exposure, i.e., the number
and severity of discovered vulnerabilities.

In particular, ShoVAT exposes two main algorithms
implemented in two distinct modules. The first algorithm
automatically reconstructs CPE names from service
banners returned by Shodan. The procedure employs an in-
memory mapping of all CPE names extracted from NVD
and structured in a multi-tree-like fashion. The second
algorithm fuses two mathematical constructions into a
bipartite-hyper graph model in order to ensure accurate
and memory-efficient representation of CVE entries. The
algorithm takes the CPE names discovered in previous
steps and returns a list of CVE entries and vulnerability
scores given in Common Vulnerability Scoring System
(CVSS) format.

We analyze ShoVAT’s features from several perspec-
tives. We demonstrate the linear complexity of the two
aforementioned algorithms with respect to the number of
version strings and the number of services. Subsequently,
we highlight the efficiency of the two data structures used
to store CPE names and CVE entries. Most importantly, we
demonstrate ShoVAT’s ability to perform realistic service
analysis by randomly selecting IP address classes associ-
ated to twelve institutions from seven different countries of
European Union (EU). The analysis shows intrinsic service
lifetime patterns and reveals 3922 known vulnerabilities.
Finally, we evaluate the accuracy of results returned by
ShoVAT (false positives and false negatives) and we com-
pare ShoVAT’s output against the reports generated by
Nessus [10] vulnerability scanner.

Throughout this paper we make the following major
contributions: (i) to the best of our knowledge ShoVAT
is the first documented approach that extends Shodan’s
capabilities with automated CPE and CVE identification;
(ii) while the examined commercial and open-source
tools such as Nessus [10], p0f [11] and PRADS [12]
rely on manually defined search patterns for processing
service banners, ShoVAT tackles the problem differently
by automatically compiling a list of all possible products
available in NVD, which eliminates the need of source
code updates and plug-in development; (iii) ShoVAT
accurately reconstructs CPE names from modified banners,

a feature that is not available in other approaches;
(iv) ShoVAT does not require direct interaction with
the inspected services, which ensures that reports can
be delivered in few minutes, as opposed to existing
techniques that necessitate repeated scanning and probing;
(v) ShoVAT provides a novel approach to dynamically
reconstruct CPE names from service banners by leveraging
a multi-tree view of CPE version numbers and several
heuristics for the identification of product names; (vi)
ShoVAT embraces an in-memory representation of the
entire NVD through a novel data model built on bipartite-
hyper graphs; and (vii) ShoVAT has built-in capabilities
(owed to Shodan) to generate historical reports that do
not require further installations of additional monitoring
software/hardware.

The remaining of this paper is organized as follows.
An overview of related work is given in Section 2.
Then, Section 3 presents ShoVAT’s building blocks and
algorithms for reconstructing CPE names and extracting
CVE entries. Experimental results are presented in Section
4 and the paper concludes in Section 5.

2. RELATED WORK

In the field of vulnerability assessment, or more generally
in the field of network asset discovery we find a variety
of methods where classification is performed at various
network levels starting from IP/UDP/TCP headers to
application-layer packets. Popular network scanning tools
such as Nmap [13] and more recently ZMap [14] can
provide valuable information on discovered services to
vulnerability assessment tools. As such, ShoVAT uses
Shodan API to acquire a list of available services and
service-specific information in a target IP address range.
This data is then used by subsequent processing phases in
order to reconstruct CPE names and to identify possible
vulnerabilities.

In the field of network asset discovery we can find
several tools such as p0f [11] and PRADS [12], which rely
on user-specified signatures to distinguish between specific
products and version numbers. These tools generate a list
of discovered assets from network traffic capture files.
Compared with such approaches, ShoVAT goes further and
automatically reconstructs exact CPE names and extracts
CVE entries from NVD, providing a comprehensive set of
reports to security analysts.

Nessus is an “all-in-one” vulnerability assessment tool
[10]. It actively probes services in order to test for
known vulnerabilities and possible service configuration
weaknesses. It relies on plug-ins which are specifically
written to test for the presence of particular vulnerabilities.
Although tools such as Nessus can accurately identify
vulnerabilities, they require constant development of plug-
ins which rely on predefined service patterns. Therefore,
minor changes to service description strings, i.e., banners,
can render such tools ineffective. Another limitation of
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Nessus is that it does not monitor service vulnerability
changes over time. However, this is an important
requirement in modern computer networks, where changes
may lead to security breaches and significant exposure
of important assets. Conversely, since Shodan stores
historical data on discovered services, ShoVAT supports
historical vulnerability assessments and it can generate
detailed analysis reports on vulnerabilities which appeared
or which have been eliminated throughout a service’s
lifetime. This constitutes a significant advancement of
the security monitoring field, which is owed to the
combination of features provided by Shodan and ShoVAT.

NetGlean [15] provides real-time and historical view
on the analyzed system. It continuously monitors the
underlying network infrastructure and constructs machine
fingerprints based on a variety of system features such
as installed services, Operating System (OS) name and
version, and so on. NetGlean relies on distributed network
“sensors” to acquire network packets and a database
system to store results in a time-ordered series. Although
from one point of view this approach can provide
historical data on the analyzed services, it suffers from
several shortcomings. First, it requires the deployment of
complex monitoring infrastructure. Second, the generated
fingerprints are not suitable for vulnerability assessment
since they are targeted towards asset discovery, instead of
the construction of well-formatted identifiers, e.g., CPE
names. Lastly, since NetGlean falls into the category of
active scanners, it requires interaction with all target hosts,
while ShoVAT does not need such measures since it relies
on information provided by Shodan scanners.

Although not in the main scope of this paper, we
mention that besides service discovery, vulnerability
assessment in general also embraces OS fingerprinting.
Besides classical tools such as Nmap [13] and ZMap
[14], a variety of existing techniques explore the use of
different network packet fields to extract valuable OS-
specific information [16, 17, 18, 19, 20, 21, 22].

In this category the work of Auffret [16] combines
the advantages of signature-based passive fingerprinting
techniques with active probing in order to accurately
identify OS in a restrictive scenario in which services are
located behind filtering devices and have only one TCP
port open. The proposed tool, called SinFP is suitable for
fingerprinting over IPv4 as well as IPv6 and is available
as open-source software [23]. More recently, Shamsi, et
al. [24], proposed Hershel, a single packet probing for OS
fingerprinting. The tool pioneers a novel approach to OS
fingerprinting where a variety of fields from SYN packets
are used to ensure accurate OS fingerprinting.

Since ShoVAT falls into the category of passive
vulnerability assessment tools, it relies on the accuracy
of data acquired from Shodan search engine. Compared
to the aforementioned techniques, ShoVAT provides
complementary features which expand the applicability of
tools such as Nmap, ZMap, Nessus, SinFP, and Hershel.
More specifically, ShoVAT embodies intelligent banner

processing techniques which are not found in existing
techniques and automated CPE name reconstruction as
well as CVE entry extraction from the entire NVD.
Subsequently, we have found that only NetGlean provides
full support for time-based analysis, but NetGlean is
mainly targeted towards fingerprinting, while ShoVAT
provides historical assessment for changes in service
vulnerabilities.

3. PROPOSED APPROACH

In this section we present the building blocks of ShoVAT
and an analysis of the algorithms providing its rich set of
features.

3.1. Vulnerability reports

Vulnerabilities constitute software flaws that enable
attackers to perform malicious operations such as altering
data, take control of underlying Operating System, or to
expose and destroy valuable/sensitive information. Dealing
with vulnerabilities is a challenging task mainly because
every vendor and institution running a vulnerability
database may have its own naming convention. In order to
facilitate the sharing of vulnerability-related information,
the Common Vulnerability and Exposure (CVE) was
introduced in 1999.

One of the most well-established vulnerability
databases, the National Vulnerability Database (NVD),
builds on the information provided by CVE. NVD is meant
to “enable(s) automation of vulnerability management,
security measurement, and compliance” and it is often
viewed as the “ground truth” for software vulnerability
assessment [25]. The CVE entries available in NVD
include a variety of fields such as a brief overview of the
vulnerability, external references to advisories, impact
rating, and a list of vulnerable software.

At the heart of every CVE entry lies the Common
Platform Enumeration (CPE), “a standardized method
of describing and identifying classes of applications,
operating systems, and hardware devices present among
an enterprise’s computing assets” [26]. CPE names provide
information on software vendor, name, version, language,
edition, etc. A list of CPE names enclosed in ‘AND’/‘OR’
schemas in each CVE entry provide the list of vulnerable
software products. An example CPE is the following:

cpe:/a:microsoft:ie:7.0:beta1,

where microsoft denotes the vendor, ie denotes the product,
7.0 denotes the version number, and beta1 denotes the
software update.

An important feature of each CVE entry is its associated
vulnerability score provided in the Common Vulnerability
Scoring System (CVSS) format. CVSS scores range from
0 to 10, 0 being the lowest (low severity), and 10 being
the highest (highest severity) vulnerability score that can
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Figure 1. ShoVAT modular architecture.

be assigned to a specific CVE entry. Additional details on
CVE can be found in [25, 26].

3.2. Architectural overview

ShoVAT was mainly designed to complement the data
provided by traditional Shodan queries. It uses Shodan
API to issue queries on the analyzed network block
to http://www.shodanhq.com and it processes the
received service banners in the search for known CPE
names and CVE entries. Before launching its analysis
modules, ShoVAT compiles a list of all known CPE
names into a single input file by processing NVD’s
XML data files. Since NVD is updated once every day,
it suffices to download NVD’s XML files and run this
sequence once per day. ShoVAT’s internal modules build
an in-memory representation of the entire NVD using
an efficient graph structure presented in the following
sub-section. By doing so, CVE entries are proficiently
extracted and processed in order to produce meaningful
reports. Owed to Shodan’s ability to index past device
configurations, one of ShoVAT’s key features is that it can
generate reports on past service vulnerabilities. This paves
the way toward visualizing an institute’s ability to reduce
its security exposure over time, but also to identify critical
dates which have led to significant security changes.

3.3. ShoVAT’s modular architecture

ShoVAT’s architecture embodies four main modules
responsible for querying external Shodan and NVD
databases, processing and storing intermediate results, and
generating reports. Namely, the four modules depicted in
Figure 1 are the following:

• Shodan Data Acquisition Module (SDA-M). By using
Shodan API SDA-M queries Shodan’s database for the
requested IP addresses and stores the results in local
json files. For each IP address the results include the

http/1.0 302 found

date: tue, 20 aug 2013 12:41:10 gmt

server: apache/2.2.21 (win32) mod_ssl/2.2.21 openssl/1.0.0e 

php/5.3.8 mod_perl/2.0.4 perl/v5.10.1

x-powered-by: php/5.3.8

location: http://193.226.19.7/xampp/

content-length: 0

content-type: text/html

cisco ios software, c3750 software (c3750-ipbase-m), version 

12.2(53)se, release software (fc2)

technical support: http://www.cisco.com/techsupport

copyright (c) 1986-2009 by cisco systems, inc.

compiled sun 13-dec-09 16:25 by prod_rel_team

Example A

Example B

Figure 2. Example of two service banners returned by Shodan.

following main details: the timestamp at which the scan
was performed, open ports, banner, and identified OS.

• CPE Identification Module (CPEI-M). Once data is
fetched from Shodan by SDA-M, this module processes
the results in order to identify possible CPE names.
First, it processes the local NVD copy in order to extract
the list of all known CPE names. Since NVD database
is updated once per day, this procedure is run once per
day, when a new version of NVD is made available. The
preparation of CPE lists is followed by the identification
of CPE names in the results returned from Shodan’s
database. The output of this procedure is then stored in
local files.

• Vulnerability Extraction Module (VE-M). Its main
purpose is to identify specific vulnerabilities, i.e., CVE
entries, based on CPE names provided by CPEI-M. For
this purpose, as documented later in this paper, it builds
an in-memory mapping of CVE entries and CPE names
from the local copy of NVD. Specific vulnerabilities
together with their associated metrics are then extracted
through in-memory look-up operations and are stored in
local files. The module also serves as update interface
for downloading new NVD versions.

• Report Generator Module (RG-M). Finally, this module
generates reports in the form of XML and png image
files. Reports produce meaningful summaries by group-
ing together the discovered services, vulnerabilities and
metrics.

At this point it is also important to underline that besides
their enclosed features, modules can be selected to run
independently of each other given that the required input
data is already available. This is an essential characteristic
of ShoVAT, which enables running specific modules
without the need to re-execute previous time-consuming
procedures. In the remaining of this section we describe
the algorithmic constructions behind the core features
supported by ShoVAT: the identification of CPE names and
of CVE vulnerability entries.
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3.4. CPE name reconstruction

The exact identification of CPE names is a fundamental
requirement in ShoVAT’s architecture. This is mainly
owed to the fact that ShoVAT uses NVD as vulnerability
database, where well-formatted CPE names are the core
building blocks of CVE entries. However, this procedure
is not trivial since product vendors might use a variety of
formats for product-version strings.

In order to illustrate the main difficulties arising
from exact CPE identification let us consider the two
examples outlined in Figure 2. Example A illustrates
the simplest case in which the banner contains several
vendor, product and version numbers (underlined with
continuous lines) in a well-structured and intuitive format.
Contrarily, Example B exposes a banner where information
on one single product is spread across the entire service
string (underlined with dashed lines). Faced with these
challenges, ShoVAT provides an automated approach to
extract product information spread across a given string,
e.g., service banner, in the attempt to find exact CPE
names. The approach builds on hash tables for storing
version numbers and CPE names as well as specially
crafted heuristics embedded in an algorithm capable to
automatically reconstruct CPE names.

The fundamental observation on which CPE name
identification is built in ShoVAT is that typical version
numbers consist of a sequence of numbers and ‘.’ symbols.
Therefore, instead of searching for sub-string matches
for the entire CPE database consisting of more than 164
thousand entries, ShoVAT processes the input service
string in order to identify version numbers that match
the regular expression pattern Vpat=“I.(I.)∗I”, where I
is an integer and ‘*’ denotes zero or more repetitions of
‘I.’. This way the search space is dramatically reduced
to the number of CPE names that contain the identified
pattern. The search continues with the identification of
known vendor and product names, sub-version numbers
and update numbers.

Based on this observation we adopted a hash table
to store CPE names associated to version numbers. As
such, given the set of all CPE names C extracted from
the NVD database, and the set of all version numbers
V extracted from the CPE file list, we define the hash-
mapping function hv : V → P(C) to return the sub-set
of CPE names for a given version number, where P(C)
is the powerset of C. However, by using only hv , in
case of partially identified version numbers, e.g., for
v =“10.3.1” extracted from “10.3.1 build 476”
∈ V , hv(v) will yield ∅. Consequently, a second data
structure is defined to organize version numbers in multiple
hierarchical tree structures where each intermediate node
denotes a sub-version number and each leaf node belongs
to V . For instance, in case of the previous version
number, “10.3” will become the root of one such
tree, “10.3.1” will represent its child node and finally
“10.3.1 build 476” will become one of the leaf
nodes. This way search operations can continue with

partially identified version strings, which will eventually
point to the correct version number available in CPE.

By taking each CPE version number and recursively
building sub-version numbers we generate a multi-tree
data structure. The elements of this tree are version
numbers in set V ′, where V ′ = V ∪ S and S denotes
the set of all sub-version numbers generated from each
element in V . To ensure fast access to nodes ShoVAT’s
implementation of this data structure uses a hash-map h′v :
V ′ → P(V ′ × flag), where flag ∈ {0, 1} and P(V ′ ×
flag) is the powerset of V ′ × flag. h′v returns a set of
version-flag pairs (v, flag), where if flag = 0, then v is a
leaf node and if flag = 1, then v is an intermediary node.
A graphical view of the main data structures used in the
process of CPE number identification is provided in Figure
3.

Next, we present the description of the CPE name
reconstruction algorithm implemented in ShoVAT, which
uses the data structures described above. The algorithm
relies on the data received from Shodan. Recall that
for each host and port/service discovered, Shodan API
returns multiple timestamped entries corresponding to
different Shodan scan times. At the same time Shodan
returns other fields as well including CPE, version,
product, and so on. Therefore, each entry returned
by Shodan can be characterized by the tuple σ =<
host, port, t, banner, os, cpe, product, version >.
Nevertheless, since os, cpe, product, and version are
most of the times empty or inaccurate, ShoVAT builds
its knowledge independently, but uses these values to
complete its view on the analyzed services.

Continuing with the algorithm’s description, from each
Shodan entry σ the algorithm extracts the set of version
numbers corresponding to Vpat pattern from banner field.
This operation is performed by get pat(Vpat, banner)
helper function which returns the set of version numbers,
denoted by ϑ. Then, for each v ∈ ϑ and ς = hv(v), if
|ς| > 0 we search for best CPE matches for which at least
vendor and product names are found in the CPE name.
For this purpose ShoVAT uses a weighted matching algo-
rithm implemented as weighted match(cpe, banner)
helper function. From each cpe the function extracts
the list of continuous but distinct sequences of letters
and numbers, denoted by τ , other than the version
number which was already identified. For example, for
CPE “cpe:/o:cisco:cisco ios:12.2:se”, τ =
[cisco, ios, se]. Then, for each s ∈ τ that is also found in
banner as a distinct word, the function increases a weight
counter’s value by 1. However, if the pattern is found next
to a version number the weight is incremented by 2. By
doing so, we reduce the weight of words which might
lead to the selection of invalid CPE names, e.g., words
from English language which are not associated to CPE
names. Such an example is provided in Figure 4, where it
is shown that ‘by’ word would lead to the improper selec-
tion of “cpe:/o:cisco:cisco ios:12.2:by” and
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Figure 3. Data structures used to store CPE names.
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Figure 4. Weighted word matching in banner returned by Shodan. Green color denotes the selected (correct) CPE names.

Algorithm 1: Reconstruction of CPE names from data retrieved from Shodan.
input : Shodan entry < host, port, t, banner, os, cpe, product, version >
output: A set of CPE namesRcpe and a set of possible OS namesRos

Let Vpat=“I.(I.)∗I”;
ϑ = get pat(Vpat, banner);
LetRcpe = {cpe};
LetRos = {(os, version)};
foreach v in ϑ do

Let ς = hv(v);
if |ς| > 0 then
Rcpe = Rcpe ∪ {(cpei, weighted match(cpei, banner))|cpei ∈ ς};

else
Let ϑ′ = get leaves(h′v(get exact pattern(Vpat, v)));
Let ς ′ =

⋃
{hv(v

′′)|v′′ ∈ ϑ′};

Rcpe = Rcpe ∪ {(cpei, weighted match(cpei, banner))|cpei ∈ ς ′};
end

end
Ros = Ros ∪ {match os names(OSnames, banner)};

“cpe:/o:cisco:ios:12.2by” as CPE names. Nev-
ertheless, in the same example ‘se’ is weighted with a
superior value than ‘by’ since ‘se’ is in the direct prox-
imity of 12.2 version number, which leads to the correct
identification of CPE names.

Next, the algorithm continues with |ς| = 0, that is,
with the case in which the version number extracted
from banner was not found in V . The algorithm derives
the sub-string v′ from each v ∈ ϑ such that v′ follows
exactly the Vpat pattern. This operation is performed by
the helper function get exact pattern() and is aimed

at identifying the starting point for further CPE name
searches in a sub-tree containing version numbers starting
with v′. Since CPE names are associated to leaf nodes, the
get leaves() helper function is used to return the set ϑ′

of version numbers (leaf nodes) for each v′. Similarly to
the previous case, CPE names associated to elements in ϑ′

are processed by weighted match(cpe, banner), where
cpe ∈ hv(v

′′) and v′′ ∈ ϑ′.
Finally, the algorithm looks for possible OS names in

each banner based on a set of fixed (known) OS names
OSnames. Once a possible OS name is identified by helper
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function match os names(), it is added to the return set
Ros, which is finally returned by the algorithm together
with the possible CPE names found in the previous steps,
denoted byRcpe. Note that the algorithm does not attempt
to identify OS version numbers at this stage of the process
since the experiments we performed with Shodan showed
that generally, OS version numbers are missing or are
poorly defined not only in banners, but in CPE names as
well. Therefore, it is important to note that ShoVAT can
only approximate possible OS version numbers based on
available information.

Nevertheless, since several CVE entries also define OS-
dependent vulnerabilities, ShoVAT uses this approximate
information in the vulnerability identification phase and
it reports back entries in which case exact OS matching
was not possible. It is also important to note, however, that
since ShoVAT is a passive vulnerability assessment tool
it’s body of knowledge is derived from third-party tools
such as Shodan. More precise matching may be delivered
by active probing techniques such as the ones described
in [14, 18, 19, 24, 27]. However, this is not a trivial task
and as confirmed by [28], today it still combines manual
and automated techniques to ensure high OS fingerprinting
precisions. Therefore, although we mainly consider this
direction of work to be out of ShoVAT’s scope, previous
research on active OS fingerprinting may be embodied
into ShoVAT, which would transform ShoVAT into a
hybrid passive-active vulnerability detection tool. The CPE
reconstruction algorithm is summarized as Algorithm 1.

3.5. CVE entry extraction

CVE entries are extracted from a local copy of NVD files,
based on CPE names identified by Algorithm 1. However,
the procedure is not as trivial as one would believe, since
each CPE name requires a complete search through the
entire NVD consisting of approximately 450MB of data
structured in several XML files. Therefore, we propose
an efficient in-memory mapping of NVD entries which
reduces significantly the complexity of search operations.

Fundamentally, as already discussed at the beginning
of this paper, each CVE entry embodies amongst others,
several ‘OR’ sections which may be placed within one
‘AND’ section. Each section includes one or more CPE
names denoting vulnerable products which might depend
on the presence of other products in case ‘AND’ sections
are defined. Conceptually, we may also view each CVE
entry as being associated to several CPE names through
‘OR’ and ‘AND’ links, while each CPE name may be
associated to at least one CVE entry.

Based on these observations we propose a novel
approach to model the NVD database into a memory data
structure. The proposed model fuses two mathematical
constructions: bipartite graphs and hyper graphs.

Bipartite graphs are typically used to model concepts
and data structures where vertices can be divided into two
disjoint sets U and V such that each vertex in U is linked
to at least one vertex in V. By applying this principle to

cpe1
e1

e2
e3

cpe2

cpe3

e4

e5

e6

cpe4

cve1

cve2

‘AND’ hyperedge

‘OR’ hyperedge

C N

Figure 5. Example graphical representation of the bipartite-
hyper graph model used to store data from NVD.

NVD, ‘U’ is equivalent to the set of CPE names C and
‘V’ is equivalent to the set of all CVE entries from NVD,
denoted by N .

In the context of hyper graphs on the other hand, each
edge can connect any number of vertices. Formally, a hyper
graph is modeled as a pair (V,E), where V is the set of all
vertices and E is the set of edges such that E ⊆ P(V) \
{∅}, where P(V) is the powerset of V. By assuming
that each CVE entry defines only ‘OR’ and/or ‘AND’
links to several CPE names, the concept of hyper graphs
can be naturally mapped to modeling NVD. The main
advantage of using hyper graphs is that CPE names can
be grouped together in order to ensure fast identification of
related CPE names linked to a specific CVE entry. This
also provides a precise mirroring of the original XML
representation of NVD and reduces the amount of memory
required to store all CVE entries.

By leveraging the previous constructions we model
NVD using a bipartite-hyper graph defined as BH =
(C,N,E,L). In this definition C is the set of CPE names,
N is the set of CVE entries, and E is the set of edges
such that E ⊆ P(C ∪N) \ {∅}. Additionally, the model
includesL, denoting the set of labels attached to each edge.
Each element of L is a pair (l, ε), where l is the label given
as a string, and ε is a subset of E. In our case, however,
L has only two elements, namely one where l =“OR” and
another one where l =“AND”. A graphical visualization
of the bipartite-hyper graph model for two CVE entries
and four CPE names is given in Figure 5.

Since the majority of operations built into ShoVAT
concerning specific BH instances constitute searches on
CVE entries, our implementation of bipartite-hyper graph
adopts mappings based on several hash tables. As such, we
define hcpe : C → P(N) to return the set of CVE entries
for a given CPE name, and its inverse h−1

cpe : N → P(C)
to return the set of CPE names for a given CVE entry.
Additionally, we define he : C ∪N → P(E) to return
the set of edges connected to a CVE entry or a CPE
name. In the proposed CVE entry extraction algorithm
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we also employ two helper functions: the label(e), e ∈ E
helper function is used to return the label string for a
given edge, and the count os words(cpe,OS), cpe ∈ C
function used to count the number of words from OS set
(possible OS string names) that appear in cpe string.

The CVE entry extraction algorithm takes for each host
and timestamp the set of CPE names ς and the set of
possible OS names OS identified by Algorithm 1 and
returns a set of possible CVE entries Rcve. Each element
in Rcve is a pair (cve,match), where cve ∈ N is a CVE
entry, while match is a real number with several possible
values:

• ‘0’ denotes positive CVE match without the need to
check additional dependencies, i.e., no ‘AND’ section
present.

• ‘1’ denotes positive CVE match with the additional
matching of CPE dependencies.

• ‘2’ denotes positive CVE match with the additional
matching of OS names.

• ‘3’ denotes negative CVE match owed to missing
matching dependencies.

• >‘3’ (a number greater than 3) denotes the percentage
of positive match based on the number of OS words
matching specific CPEs in CVE entry.

The algorithm takes each CPE name for the given
host, i.e., cpe ∈ ς , and each CVE entry connected to cpe,
i.e., cve ∈ hcpe(cpe), and performs the following steps.
First, it identifies the edges connecting cpe and cve by
intersecting the output of he(cpe) and he(cve). The result
of this intersection is stored in εall which is then used to
find if any ‘AND’ edges are present between cpe and cve.
If so, then the algorithm finds the dependencies, i.e., CPE
names, which are associated to each ‘AND’ edge eand ∈⋃
{e ∈ εall|label(e) =“AND”}. For this purpose it builds

the set of ‘OR’ edges linked to cpe, i.e., εor =
⋃
{e ∈

εall|label(e) =“OR”}, and builds the set of dependencies
ςdep by looking for CPE names cpe′ ∈ eand, which do not
have ‘OR’ edges in εor .

Once the algorithm finds dependencies for a specific cpe
name it verifies if dependencies from ςdep are within its
initial set of CPE names ς . If so, it stores the positive match
(cve, 1) inRcve and it runs the same sequence for the next
CVE entry, denoted in the algorithm by @StepNextCVE.
Otherwise, a deeper inspection is performed on CPE
dependencies in the search for possible OS name-based
dependencies. The count os words() helper function is
used for this purpose which returns ‘2’ for an exact word
count match and ‘3’ plus a match percentage, otherwise.
The match value together with the CVE entry are then
stored inRcve.

Finally, the algorithm runs the sequence corresponding
to the case in which no dependencies have been identified,
i.e., there are no ‘AND’ sections in CVE entry. This is a
simpler scenario in which (cve, 0) is stored in Rcve and

the execution steps to the next CVE entry. A summary of
the algorithm is given in Algorithm 2.

3.6. Implementation details

ShoVAT has been implemented in Python language
mainly because Shodan provides Python API for
querying its database. As already stated, ShoVAT’s
architecture is highly modular, each of the four modules
is implemented as a separate Python module accessible
from the console by running shovat.py main script and
selecting different options.

In its present form ShoVAT is a console-based
application and it operates on files and generates results
in different output files. This approach is well-suited
for security analysis since it allows the automation of
vulnerability assessment and the coupling of ShoVAT with
additional security assessment tools. ShoVAT has been
mainly tested on Ubuntu and Debian distributions, but
since it relies on traditional Python libraries, it should
run on other distributions as well. Finally, we mention that
ShoVAT’s current code is available in GitHub as a private
repository, but future versions might be publicly released.

4. ASSESSMENT AND EXPERIMENTAL
RESULTS

We conducted several experiments and tests in order to
validate the proposed approach and to identify possible
limitations of ShoVAT’s built-in algorithms. In this section
we present the results of these experiments as well as
data confirming high performance of ShoVAT in terms of
execution time as well as of false/true positive rates. Since
the most significant parts of ShoVAT are concentrated in
CPEI-M and VE-M modules, we focus on the operations
implemented within these two modules.

4.1. Complexity of operations

As already discussed in the previous sections, results
from Shodan are structured according to host, port and
timestamp at which the scan was performed. Therefore,
Algorithm 1 will be executed for each host, port and
timestamp entries as well. We use n to denote the number
of hosts, p to denote the number of discovered ports, and
t to denote the number of timestamped scans performed
on each host. For each such entry the algorithm extracts
all version number strings from service banner, denoted
by v. Then, for each version number and each associated
CPE name the algorithm finds the best possible match. The
number of CPE names for each version number is denoted
by c.

The complexity of Algorithm 1 is linear with respect to
n, p, t, v, and the number of CPE names c. The complexity
C1 of the first algorithm can therefore be estimated as:

C1 = O(nptvc). (1)
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Algorithm 2: Extracting CVE entries.
input : A set of CPE names ς and a set of possible OS names OS
output: A set of CVE entriesRcve

foreach (cpe, cve), where cpe ∈ ς and cve ∈ hcpe(cpe) do
Let εall = he(cpe) ∩ he(cve);
if ∃e ∈ ε : label(e) =“AND” then

Let εor =
⋃
{e ∈ εall|label(e) =“OR”};

foreach eand ∈
⋃
{e ∈ εall|label(e) =“AND”} do

ςdep =
⋃
{cpe′ ∈ C|cpe′ ∈ eand and ∀e ∈ he(cpe

′) if label(e) =“OR”, then e /∈ εor};
foreach cpe′ ∈ ςdep do

if cpe′ ∈ ς then
Rcve = Rcve ∪ {(cve, 1)};
@StepNextCVE

end
match = count os words(cpe′, OS);
Rcve = Rcve ∪ {(cve,match)};

end
end

else
Rcve = Rcve ∪ {(cve, 0)};
@StepNextCVE

end
end

It should be noted, however, that this represents a
relatively pessimistic upper bound since throughout our
experiments we noticed in many cases identical host/port
entries at different scan times. These entries are filtered
by ShoVAT and Algorithm 1 is only executed for new
entries, which means that in many cases t = 1. At the
same time, the number of version numbers discovered in
each banner is usually one. Nevertheless, in the typical
case of Web services for example, banners may include
additional information on sub-product versions as well,
e.g., openssl and php versions. Therefore, a rough
estimation of v places its values in the [1, 6] interval. The
number of CVE names c can however range from 1 to the
worst case scenario of approximately 4000.

It is also important to realize that hash table
implementations embodied in Algorithm 1 have led to a
complexity of approximately O(1) for search operations.
This way C1 is free of such search operations on relatively
large tables with more than 164 thousand entries.

The execution of Algorithm 2 is performed on each
set of CPE names r returned by Algorithm 1 for each
host, port, and scan time. The algorithm extracts from
NVD loaded into memory the associated CVE entry and
verifies if dependencies are present and if so, are satisfied.
The number of CVE entries associated to each CPE name
is denoted by e, and the number of dependencies, i.e.,
CPE names which need to be verified, is denoted by d.
The complexity C2 of the second algorithm can therefore
roughly be estimated as:

C2 = O(nptred). (2)

Similarly to the previous algorithm, ShoVAT verifies if
identical CPE names from the same host have already been
processed and returns the previous set of results without re-
executing the algorithm sequence, i.e., in several cases r =
1. The number of CVE entries depends on the number of
discovered CPE names, while the available dependencies
may also vary according to the identified CVE entries.
Nonetheless, the algorithm has a linear complexity with
respect to n, p, t, r, e, and the number of dependencies
denoted by d.

Lastly, it should be noted that both algorithms can
operate independently of each other, making them well
suited for parallel processing. Nonetheless, in its present
form ShoVAT was destined to run sequentially, although its
modular architecture is not constrained to such executions.

4.2. Memory data structures

As already discussed, CPEI-M uses two memory-resident
hash tables. The first one stores CPE names loaded from
NVD, while the second one builds several version number
trees for quick access to sub-version elements.

In Figure 6 (a) we depicted the number of trees and
the number of nodes (version numbers) contained by each
tree. As shown in this figure, there are few trees with more
than 10 nodes; there is in fact only one tree with 1000
nodes. This distribution is more visible in Figure 6 (b),
where it can be seen that approximately 90% of trees have
less than 10 nodes. This constitutes an important finding
since smaller trees yield better processing performance and
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Figure 6. The number of trees and nodes: (a) the number of nodes and trees; and (b) CDF of the number of nodes/tree.

Table I. Institute types used in the use case assessment
process (from seven different countries across the EU).

Type of institution Count Notation

University 5 Univi
Telecom operator 3 Telcoi
Railway system 2 Raili
Bank 1 Bank1
Power company 1 Power1

finally to less CPE names that need to be processed for
each version number that is found in service banners.

The proposed bipartite-hyper graph model for in-
memory CVE representation provides an efficient
approach for reducing the number of edges associated
to each CVE. To illustrate the valuable properties of the
proposed CVE model, in Figure 7 (a) the Cumulative
Distribution Function (CDF) of the number of CPE names
associated to each CVE is shown, as originally available
in NVD. Here it is shown that approximately 30% of CVE
entries have more than 10 CPE names associated, while
10% have more than 70 CPE names associated and 5%
have more than 100. It should be further noted that we
have also found 352 CVE entries with more than 1000
CPE names associated, which constitute an important
motivation for the construction of efficient data structures
for in-memory representation. Two particular CVE entries
in this list are CVE-2007-2586 and CVE-2007-2587,
which include each 1345 CPE names. Both vulnerabilities
refer to the same Cisco IOS versions (from 11.3 through
12.4), which is also the reason why they have the same
number of CPEs associated.

Conversely, the bipartite-hyper graph model proposed
in this paper can associate more than one CPE name
to the same CVE through a single edge. The dramatic
reduction in the number of required edges to associate
CPE names with CVE entries in the proposed model is
depicted in Figure 7 (b). Here it can be seen that 98% of
CVE entries require one “AND” edge and five “OR” edges
in the bipartite-hyper graph structure. Furthermore, only

less than 1% of CVE entries require more than five “OR”
edges and in only one case we have found the need of 47
“OR” edges (see CVE-2007-1093). These last cases are
owed to CVE entries that include more than 10 “AND”
edges, where each “AND” edge is associated to a specific
vulnerable software configuration.

4.3. Use case assessment

In the next phase of the assessment we selected twelve 24-
bit IP blocks, i.e., class ‘C’ sub-nets, allocated to different
institutions across seven countries from EU. IP addresses
were carefully verified using Shodan API and they were
cross-referenced with https://www.maxmind.com/
in order to ensure that they were in fact assigned to
the specific institutions. More specifically, we selected
five IP blocks assigned to five different universities, three
IP blocks assigned to three different telecommunications
operators, two IP blocks assigned to two different railway
transportation operators, one IP block assigned to one
banking institution and one IP block assigned to one power
company. A summary of the selected institution types
and the notation used throughout this section for each
institution are given in Table I.

In the next phase we launched ShoVAT’s acquisition
module (SDA-M) with the selected list of IP blocks. By
leveraging Shodan’s API, the module scanned the entire
class of IP addresses for each institution’s IP block in the
search for available historical data. For each institution
Shodan API returned historical data on all scans performed
since the service was first detected.

The results revealed a total of 886 hosts and 1501
services spread across the twelve institutions included in
this study. The most common services discovered were
HTTP and HTTPS, however, we have also discovered FTP
services, DNS, SSH, and SNMP. In total, we discovered
41 different type of services, the largest variety of services
was found in University-type institutions. Nonetheless, by
counting the total number of services, a closer inspection
of Rail1 revealed 228 different services, which was
slightly lower than the maximum number of 265 services
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Figure 7. The number of edges associated to CVE entries: (a) CDF of the total number of CPE names associated to each CVE as
they appear in NVD; and (b) the number of edges associated to each CVE in the bipartite-hyper graph representation.

Table II. Discovered service types and hosts across the twelve selected institutions.

Universities Telecommunications Railway Banking & Power
Service Univ1 Univ2 Univ3 Univ4 Univ5 Telco1 Telco2 Telco3 Rail1 Rail2 Bank1 Power1

DNS 4 – 1 10 2 – 1 2 – 2 – 2
FTP 9 – 4 20 6 2 1 6 – 4 – 6
HTTP 75 34 5 54 39 48 14 53 145 47 15 80
HTTPS 26 38 5 20 31 19 13 33 83 17 17 52
IMAP 1 – – 4 2 0 1 2 – – – –
IMAPS 7 1 – 4 4 – 2 – – 1 – –
POP3S 6 1 – 4 2 – 1 2 – 1 – –
RDP 15 – 1 22 1 5 2 5 – 1 – –
SMTP 7 – – 12 – 2 7 10 – 3 – 2
SSH 27 3 5 19 28 0 1 5 – 2 – –

Total serv. type 26 8 7 30 13 8 17 17 2 14 2 9
Total serv. count 265 80 23 244 127 80 55 134 228 84 32 149
Host count 103 46 10 91 72 55 29 81 207 60 25 107
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Figure 8. Example of ShoVAT’s ability to return historical data on different services. The figures also illustrate possible lifespan
differences across different sectors.
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Figure 9. CPE names discovered by ShoVAT: (a) CPE names
across different institutions; and (b) aggregated service-based

report.

discovered in Univ1. A summary of this report is provided
in Table II.

The results returned by SDA-M also revealed the
lifetime of each service where we noticed a fundamental
difference between the different types of institutions. By
taking the most common type of service, HTTP, for
instance, the lifetime of services detected by ShoVAT
varies greatly with the type of institution. In the case
of Universities included in this study we have found a
large number of services with a lifetime of at most 6
months, while in the banking system services seemed to
have a longer lifespan (at least for the services included
in this study). This pattern is also depicted in Figure 8,
where we have included examples on FTP and SMTP
services as well. Although in the present assessment we
do not provide an in-depth analysis on service lifetime
patterns, we emphasize the fact that these results constitute
valuable testimonies on the important features delivered
by ShoVAT, which in this case are also owed to Shodan’s
service indexing capabilities.

In the next phase of the assessment we launched
ShoVAT’s CPE name identification module (CPEI-M) on
the results returned by SDA-M. In order to highlight the
time-dimension capabilities of ShoVAT, in the following
analysis we included the first and last scan reports on
each service. For the first time a service was reported, the
highest number of CPE names, 205, have been identified
for Univ1. Out of these, by selecting only the ones that
were assigned the highest match, the number of CPE
names was reduced to 89. At the same time, we have
found a high number of CPE names for most of the other
universities as well. Surprisingly, the analysis revealed 127
CPE names for the power company included in the study
and 34 CPE names for Rail2. Conversely, we identified
only seven CPE names for Bank1 and only four CPE names
for Rail1.

By taking into account the last time a service
was reported, we noticed a slight decrease in the
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Figure 10. The number of unique CVEs discovered by ShoVAT:
(a) the total number of unique CVEs across different institutions
from all service scans reported by Shodan; and (b) the total
number of unique CVEs across different institutions for the first

and last scan of each service.

number of CPE names for most institutions. The most
significant reduction was reported for Univ2, where the
number of CPE names decreased from 110 for the
first time a service was scanned to 89, for the last
scan time. A deeper investigation of these changes
revealed software upgrades and configuration changes
which limited Shodan’s capability to retrieve service
banners. A summary of results is provided in Figure 9 (a).

The classification of results based on different service
types showed that the largest number of CPE names
have been identified for HTTP and HTTPS (see Figure
9 (b)). The time-based analysis also revealed that in case
of SNMP there is a significant difference between the
number of CPE names found the first time these services
were scanned and the last time they were reported. A
closer look at the results returned by Shodan showed that
these SNMP services are still available, but recent changes
in settings, possibly to community access rights, do not
permit “public” interrogations.

With this set of discovered CPE names we launched
ShoVAT’s vulnerability extraction module (VE-M). Taking
into account all CPE names from all Shodan scans, we
identified a total number of 3922 known vulnerabilities.
The distribution across the twelve analyzed institutions is
shown in Figure 10 (a). Here it is shown that out of the
3922 vulnerabilities 205 have not been fully matched due
to the absence of CPE names in “AND” conditions and 96
were only partially matched by the discovered OS names.

Subsequently, we analyzed the changes in the number
of CVEs from the first to the last time a specific service
was scanned by Shodan. As expected from the number of
discovered CPE names, we have found only minor changes
(see Figure 10 (b)). These are mainly attributed to the
changes in SNMP configurations, which have already been
discussed earlier in this section.
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Figure 11. CVE average scores and outliers across different institutions.

Finally, ShoVAT’s VE-M module calculated the average
CVE vulnerability score of each institution by using the
Common Vulnerability Scoring System (CVSS) included
in each CVE entry. As depicted in Figure 11, average
CVSS scores revolve around 5 and in most cases CVSS
scores are spread across the 0-10 spectrum. However, in
few cases such as Rail1, Telco1 and Telco3 we find that
CVSS scores are concentrated around 5 and exhibit several
outliers. More surprisingly, CVSS scores calculated for
Bank1 are also spread across the 0-10 scoring spectrum.
In this particular case it should be noted that although we
have found only two service types, HTTP and HTTPS,
Bank1 exposes several vulnerable services with maximum
CVSS scores, which might allow attackers to overtake such
services and underlying hosts.

The use case assessment presented in this section
showed that passive vulnerability assessment based on
tools such as Shodan, can be a powerful approach to
historically analyze the dynamics of vulnerabilities for
Internet-facing services. Nevertheless, it is important to
realize that since ShoVAT does not directly interact with
the analyzed systems, conclusions based on ShoVAT’s
results should be carefully formulated. It is also important
to realize the limitations of ShoVAT and the fact that it
relies on correct and up-to-date scans returned by Shodan.
Therefore, ShoVAT can only assess vulnerabilities based
on banner information and the service types detected by
Shodan. Nevertheless, vulnerability assessment in general
encompasses a series of complex steps, each requiring a
variety of tools and techniques in order to achieve highly
accurate results. ShoVAT should therefore be seen as an
important asset and part of a large palette of vulnerability
tool-chains which can aid in the passive vulnerability
assessment of Internet-facing services.

4.4. Precision analysis

Considering that CVE entry matching relies on correctly
identified CPE names, in this section we analyze ShoVAT’s
ability to correctly identify CPE names. For this purpose
we randomly selected 296 service banners ranging from
Apache servers to FTP and SSH servers from the twelve
different institutions included in the previous study. Then,
we manually analyzed each CPE name reconstructed by
ShoVAT from the service banners.

The results of this analysis showed that in most
cases ShoVAT can accurately reconstruct CPE names.
Nonetheless, we have found 23 false positives as well,
i.e., CPE names with incorrect highest matching score.
The presence of these false positives is explained by
banners which include more than one version number
and valid keywords from other CPE names. For example,
the following banner was included in this analysis (for
obvious security reasons, the “HIDDEN-STRING” was
used to hide the real name of the server):

* ok [capability imap4 imap4rev1 literal+

id auth=login auth=gssapi auth=plain

sasl-ir] HIDDEN-STRING cyrus imap4

v2.3.7-invoca-rpm-2.3.7-12.HIDDEN-STRING5 7.2

server ready

In this particular banner for the 2.3.7 version
number ShoVAT correctly identified two possible
CPE names: cpe1 =cpe:/a:rpm:rpm:2.3.7 and
cpe2 =cpe:/a:cmu:cyrus imap server:2.3.7.
However, since the “rpm” keyword is located next to
the version number, it receives a higher matching score
than the “cyrus” string, which is located further away.
Consequently, ShoVAT reported cpe1 with the highest
score, which may be interpreted as a false positive result.
A total of 23 similar cases have been identified as false
positives from the overall 296 analyzed banners, leading
to approximately 7.77% false positive rate. It should be
noted, however, that ShoVAT’s reports include all CPE
names and their rankings, which allows security experts to
choose between different levels throughout the assessment
process.

The false negative rate, i.e., CPE names with incorrect
low matching score, attributed to ShoVAT is actually
identical to the rate of false positives since for each
incorrectly ranked CPE name ShoVAT also reports the
correct CPE name (with a lower ranking). Therefore,
as already discussed in the previous example, this leads
to 23 false negatives, that is 7.77%. Results have been
summarized in Table III.

Next, we compared the accuracy of ShoVAT’s CPE
name reconstruction algorithm to the results returned by
the Nessus vulnerability scanner tool. With the permission
of our University’s IT security staff we performed a full
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Table III. Manual assessment: CPE reconstruction algorithm’s
false positive and false negative rates.

Number of Number of
Analysis banners analyzed false results Percentage

False positives 296 23 7.77%
False negatives 296 23 7.77%

Table IV. Automated assessment: CPE reconstruction algo-
rithm’s false positive and false negative rates.

Nessus CPE ShoVAT CPE False positives False negatives

67 65 6 (8.95%) 8 (11.94%)

scan of 40 Internet-facing hosts within the premises of
Petru Maior University. The results of this scan returned
67 CPEs derived from service banners and more than 80
CPEs derived from all service-specific traffic generated
by Nessus’ advanced probing modules. Within these 80
CPEs we find a variety of software configurations and
vulnerabilities ranging from SSL/TLS vulnerabilities to
DNS server recursive query cache poisoning weaknesses
which are out of ShoVAT’s scope and capabilities. In this
respect the analysis that follows focuses on the 67 CPEs
returned by Nessus and compares these results with the
output of ShoVAT. As tabulated in Table IV, ShoVAT
identified 65 CPEs, out of which 6, i.e., 8.95% represent
false positive results. As previously discussed, these are a
direct result of complex banners that incorporate several
tightly coupled version numbers and software names,
which are not trivial to analyze even for a human expert.
On the other hand, as already mentioned, the number
of false negatives should be equal to the number of
false positives. However, in this particular scenario we
have found two instances of nginx service version
1.4.4, which does not have any known vulnerabilities
up to date. Nevertheless, Nessus’s CPE reconstruction
module calculates a possible CPE name and includes this
information in the final report. This aspect is illustrated in
Table IV where we have shown a possible increase in the
number of false negatives from 6 to 8.

Finally, we evaluated the sensitivity of the CPE
identification algorithm to randomly selected sub-strings
injected into service banners. Recall that this algorithm
processes service banners in the search for keywords
available in CPEs loaded from NVD. In this respect
the algorithm is sensitive to the presence of CPE sub-
strings, and more specifically to the number of CPE
sub-strings present in service banners. To evaluate the
sensitivity of the approach we randomly selected 5000
CPEs from NVD and for each CPE we constructed a
custom service banner encompassing the sub-strings of
each CPE, delimited by white-space. Then, for each
custom banner we randomly selected a CPE with the same
version number and we added 50%, 75%, and 100% of its
sub-strings into the service banner. With each banner we

Table V. Sensitivity of the CPE identification algorithm to
randomly injected sub-strings for 5000 different CPEs.

Sub-strings injected Correct CPE Incorrect CPE
(% of chosen CPE) identifications identifications

50% 4962 (99.24%) 38 (0.76%)
75% 4856 (97.12%) 144 (2.88%)
100% 4688 (93.76%) 312 (6.65%)

ran the CPE identification algorithm and we recorded the
impact on the selected CPE. Obviously, the algorithm is
highly sensitive to the number of sub-strings associated to
a specific CPE. In fact, as depicted in Table V, in case we
inject only 50% of sub-strings, there is an approximate rate
of 0.76% of incorrect (false) CPE identifications. However,
by increasing the injection rate to 100% the incorrect
identification rate also increases to 6.65%. This means that
despite the availability of complete sub-strings for two
distinct CPEs, the algorithm will weigh differently each
CPE according to the number of sub-strings and to their
position in the service banner. Nevertheless, it should be
noted that the algorithm returns the full set of CPE names,
each with a different weight, which are then later used in
subsequent NVD vulnerability searches.

Obviously, the outcome of the aforementioned experi-
ments may be affected by software updates, configuration
changes, and newly discovered services. At the same
time, since Nessus is continuously updating its plug-ins,
and since Shodan is repeatedly scanning the Internet for
new services, the execution of the same set of tests at
a different point in time may yield different results, as
documented in the previous sub-sections. Nevertheless, the
presented experiments rely on statistically significant data
sets chosen from a variety of real Internet-facing services.
Therefore, we believe that the results presented in this
section provide an accurate view on the capabilities and
on the precision of the proposed tool.

4.5. Detailed comparison to existing tools

In order to better understand the performances of ShoVAT,
its possible limitations and advantages over existing tools,
we compared its output with the results returned by
the well-known Nessus vulnerability scanner tool. More
specifically, we installed on a Windows 7 system an
Apache Web server, SSH server, FileZilla FTP server, and
TightVNC server. Additionally, we also used a Cisco 7200
series router as a target system.

At first, we launched Nessus scanner from another
station, we performed a scan of the target systems and we
generated a Nessus report. Then, we extracted the banners
from Nessus report and we used ShoVAT to identify CPE
names and CVE entries within these banners. As depicted
in Table VI, in most of the cases the number of CPE names
and CVE entries are the same for both tools. ShoVAT
accurately identified the CPE name in PHP 5.3.6 module
of Apache server, which was also identified by Nessus.
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Table VI. Nessus versus ShoVAT.

Nessus ShoVAT
Service CPE CVE CPE CVE

PHP 5.3.6 (Apache Server) 1 37 1 37
PHP 5.3.7 (Apache Server) 1 11 1 11
WeOnlyDo 2.1.3 (SSH Server) 0 0 1! 4!
Cisco 7200 2 37 2(90) 37
FTPd-SSL 0.17 1 2 1 2
FileZilla 0.9.44 (FTP Server) 0 0 0 0
TightVNC server viewer 2.7.2 0 0 0 0

Following this identification, ShoVAT correctly extracted
from NVD all 37 CVE entries associated to this CPE.
Similarly, we recorded the same accuracy in case of an
updated PHP module, version 5.3.7. Nevertheless, in case
of the SSH server (WeOnlyDo 2.1.3) ShoVAT reported a
CPE name which was not included in the Nessus report. A
closer analysis revealed the following banner:

SSH version : SSH-2.0-WeOnlyDo 2.1.3 SSH supported

authentication : password,publickey

We contacted a local security expert and we have
been informed that ShoVAT correctly identified
cpe:/a:ssh:ssh2:2.0 as a valid CPE name for
the above banner. However, since Nessus does not include
a plug-in to analyze this particular SSH server’s banner,
it is not able to identify the CPE and its associated CVE
entries. For the remaining services ShoVAT accurately
reported the same number of CPE names as Nessus. In the
particular case of Cisco 7200, ShoVAT returned more than
90 results, however, only two CPE names were ranked
with highest scores and were used in subsequent CVE
entry explorations.

Next, we experimented with ShoVAT’s ability to extract
CPE names from customized, i.e., modified, banners. For
instance, we have made minor changes to the Cisco 7200
banner by moving the version number from the beginning
to the end of the service banner. This had a significant
impact on Nessus, which was unable to identify CPE
names and was unable to report CVE entries. Conversely,
ShoVAT’s dynamic CPE reconstruction algorithm returned
the same CPE names as in the case of the unaltered banner
and all 37 associated CVE entries.

Despite the superior precision reported by Nessus, as
documented in the previous sub-section, we underline once
again that ShoVAT belongs to a different class of tool-
chains: that of passive vulnerability assessment. In this
respect, however, the major advantage of ShoVAT over
Nessus is best illustrated by its execution time. Figure 12
compares the execution time of ShoVAT and Nessus for 40
Internet-facing hosts. Nessus’s execution time corresponds
to full host scans, while ShoVAT’s execution time includes
full communication and processing times over historical
data as well. It can be seen that there is a significant
difference between Nessus and ShoVAT execution time.

Table VII. Feature-based comparison. We used ’•••’ to denote
a strong support, ’••’ to denote a moderate support, and ’•’ for

a weak support (i.e., unavailable) of a specific feature.

Active Passive Automated Custom History
Tool assess. assess. CPE, CVE banner assess.

nmap[13] ••• • • • •
ZMap[14] ••• • • • •
p0f[11] • ••• • • •
PRADS[12] • ••• • • •
Nessus[10] ••• • •• •• •
NetGlean[15] ••• • •• • •••
SinFP[16] ••• • •• • •
Hershel[24] ••• • •• • •
ShoVAT • ••• ••• ••• •••
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Figure 12. Comparison of Nessus and ShoVAT execution time.

More specifically, Nessus requires several minutes (in
several cases more than 13 minutes) to fully scan a specific
host, while the maximum recorded execution time for
ShoVAT is less than 35 seconds. It is noteworthy that
in this specific time frame ShoVAT is able to provide
full historical reports on the scanned hosts, while Nessus
provides only the most recent scan results.

Finally, we performed a comparison between the
features delivered by other tools and the capabilities
offered by ShoVAT. As depicted in Table VII ShoVAT
falls into the category of passive vulnerability assessment
tools together with p0f [11] and PRADS [12]. However,
compared to these, ShoVAT embodies automated CPE
and CVE identification algorithms together with custom
banner processing and built-in historical assessment
capabilities. Conversely, compared to active vulnerability
assessment tools such as Nessus [10], ShoVAT does not
require the development of plug-ins for the recognition
of new CPEs and CVEs, while its built-in features enable
accurate results even with purposefully modified banners.
At last, compared to NetGlean [15], ShoVAT focuses on
the passive identification of known CPEs and CVEs, a key
feature that is not supported by NetGlean.
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Figure 13. Execution time of pre-processing operations: the
construction of bipartite-hyper graph, the extraction of CPE
names from the entire NVD, and the construction of CPE trees.

4.6. Execution time

The reconstruction of CPE names and the correct
identification of CVE entries are based on properly pre-
processed data entries from NVD. ShoVAT assumes
that the entire NVD containing all CPE names and
CVE entries is available locally in the form of XML
files. These are processed at an early stage in order to
extract the necessary information and to build ShoVAT’s
data structures described in the previous sections. The
measurements that follow were performed on a Debian
32-bit OS with 4GB RAM and Intel Dual Core 3.0 GHz
processor.

Figure 13 depicts the execution time of ShoVAT’s pre-
processing operations. Here it can be seen that ShoVAT
takes approximately 41.8 seconds to build an in-memory
representation of NVD, which is then used by VE-M to
ensure fast access to NVD’s CVE entries. Since the CPE
identification (CPEI-M) module operates independently of
VE-M, it extracts all CPE names from NVD by using
a line-by-line processing of all NVD’s XML files. The
extraction phase is executed in approximately 6.6 seconds,
while the construction of CPE trees takes around 3.1
seconds to execute.

As already stated in the previous sections, the
algorithms for the reconstruction of CPE names and for
the extraction of CVE entries have a linear complexity.
Figure 14 (a) and (b) illustrate a linear behavior for each
of the two algorithms. More specifically, Figure 14 (a)
shows the execution time of the CPE name reconstruction
algorithm based on the number of version strings. It can be
seen that for 23 version strings the algorithm runs in 3.07
seconds, while for 200 version strings the algorithm takes
20.7 seconds to execute. At the same time we measured the
execution time of the CVE entry identification algorithm,
based on the number of CPE names identified in the
previous step. As depicted in Figure 14 (b), the algorithm
runs in 8.7 seconds for 11 CPE names and in 24 seconds
for 119 CPE names. The full memory consumption of
ShoVAT, with all modules running, is of approximately
245 MB, which means that only of 6% memory (out of
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Figure 14. CPE and CVE algorithm execution time: (a) CPE
reconstruction based on the number of version strings identified
in banner; and (b) CVE entry extraction based on the number of

CPE names.

4GB) is required by ShoVAT to run and perform complex
operations on the entire NVD.

Finally, we mention that the average execution time
of communications with Shodan for the acquisition of
historical scan results is of 1.4 seconds for each host
(see Figure 15). Subsequently, we note that ShoVAT can
perform a full host scan in approximately 20 seconds,
which includes the reconstruction of CPE names and the
extraction of CVE entries for all historical data. At the
same time, an entire 24-bit IP network block is scanned
for vulnerabilities in approximately 1 hour (depending on
the number of discovered hosts).

5. CONCLUSION

In this paper we presented ShoVAT, a unique tool aimed
at the automated and passive vulnerability assessment of
Internet-facing services. ShoVAT leverages Shodan search
engine’s indexing capabilities to discover services. It
implements specially crafted algorithms to process Shodan
results in the attempt to reconstruct key vulnerability
identifiers. Vulnerabilities are derived from an efficient in-
memory model of National Vulnerability Database (NVD),
built on bipartite and hyper graphs.
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Figure 15. Execution time of communications with Shodan.

Experimental results confirmed the unique features
of ShoVAT. Namely, ShoVAT returned the full set of
vulnerabilities for all hosts and all historical data in a 24-
bit network address block in approximately 1 hour. At the
same time, cross-sectoral experiments performed on 1501
services exposed by twelve different institutions revealed
a total of 3922 known vulnerabilities, most of which
are attributed to HTTP services. Moreover, ShoVAT’s
capabilities to analyze historical data highlighted minor
reductions on the number of discovered vulnerabilities
over time, but major configuration changes for specific
services, e.g., SNMP.

The results presented in this paper constitute important
testimonies on the advanced capabilities brought by
ShoVAT to the field. Recall, however, that ShoVAT falls
into the category of passive vulnerability assessment tools,
which are generally known to have limited capabilities and
to depend on the quality of supplied data. Nonetheless, we
believe that ShoVAT represents an important asset in the
field of vulnerability assessment since: ShoVAT supports
the identification of vulnerabilities at early security
assessment phases and does not require implementation
of active and possibly disrupting probing techniques;
ShoVAT integrates historical service analysis capabilities,
which do not require the deployment of monitoring
infrastructures; and finally, ShoVAT builds on independent
modules, which can provide new opportunities to analyze
data originating from other sources as well, e.g., network
scans.

As future work we intend to expand ShoVAT’s
capabilities with a graphical front-end which will provide
real-time feedback to security experts on the progress of
the assessment. At the same time, this interface will ensure
a user-friendly and a visually structured environment to
display reports.
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