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Abstract—The dramatic increase in the use of Information and
Communication Technologies (ICT) within Networked Critical
Infrastructures (NCIs), e.g., the power grid, has lead to more
efficient and flexible installations as well as new services and
features, e.g., remote monitoring and control. Nevertheless, this
has not only exposed NCIs to typical ICT systems attacks,
but also to a new breed of cyber-physical attacks. To alleviate
these issues, in this paper we propose a novel approach for
detecting cyber-physical anomalies in NCIs using the concept
of cyber-physical data fusion. By employing Dempster-Shafer’s
“Theory of Evidence” we combine knowledge from the cyber
and physical dimension of NCIs in order to achieve an Anomaly
Detection System (ADS) capable to detect even small disturbances
that are not detected by traditional approaches. The proposed
ADS is validated in a scenario assessing the consequences of
Distributed Denial of Service (DDoS) attacks on Multi Protocol
Label Switching (MPLS) Virtual Private Networks (VPNs) and
the propagation of such disturbances to the operation of a
simulated power grid.

Index Terms—Anomaly Detection System; Networked Critical
Infrastructures; SCADA; Data Fusion; MPLS; DDoS.

I. INTRODUCTION

In the last years we have witnessed a dramatic increase
in the use of Information and Communication Technologies
(ICT) within Networked Critical Infrastructures (NCIs), e.g.,
power plants, water plants and energy smart grids. As a result,
it has been possible to implement more efficient and flexible
installations as well as new services and features such as
remote monitoring and maintenance, energy markets, and the
newly emerging smart grid. Although the advantages of this
trend are indisputable, the dramatical shift from a completely
isolated environment, to a “system of systems” integration
with existing infrastructures, e.g., the Internet, has lead to
the exposure of NCIs to significant cyber threats. This has
been highlighted by many studies on Supervisory Control And
Data Acquisition (SCADA) systems [1], [2], [3], i.e., the core
infrastructure providing monitoring and control of physical
processes, which proved that NCIs are not only subject to
typical IT systems attacks, but also to a new breed of cyber-
physical attacks.

Cyber-physical attacks exploit the cyber and physical di-
mensions of NCIs and can have serious consequences on their
normal operation. Stuxnet [4], the first malware specifically
designed to attack the control hardware of NCIs, was a
clear demonstration in this sense and showed a new level of
sophistication in malware development. Stuxnet raised many

open questions, but most importantly it highlighted the lack of
an efficient approach to detect complex cyber-physical attacks
on NCIs. Unfortunately, as stated in [3] the peculiarities of
NCIs can render traditional ICT security techniques ineffective
when faced with cyber-physical attacks. Therefore, this paper
alleviates the aforementioned issues by proposing a novel
approach for detecting cyber-physical anomalies in NCIs using
the concept of Cyber-Physical Data Fusion and Dempster-
Shafer’s “Theory of Evidence”. Anomaly-based intrusion de-
tection is well-suited for scenarios in which the behavior of
malicious attacks is not known beforehand. In traditional ICT
systems anomaly-based detections might have a high false-
positive rate due to dynamic traffic and unpredictable behavior.
However, since NCIs expose a more predictable behavior, the
use of anomaly detection systems is well suited in this case.

This work is motivated by the following arguments: (i) the
complexity of cyber-physical attacks targeting NCIs requires
techniques addressing all their dimensions; (ii) interdependen-
cies between the cyber and physical require approaches that
fuse the two dimensions in order to aggregate evidence and to
provide a holistic view of NCIs; and (iii) existing techniques
do not address the complexity of the entire system. The novelty
of the proposed approach is that it combines reports of various
cyber and physical sensors in order to provide a unified view of
an entire NCI installation; an important aspect that is missing
from related techniques. The approach is experimentally vali-
dated in a scenario assessing the consequences of Distributed
Denial of Service (DDoS) attacks on Multi Protocol Label
Switching (MPLS) Virtual Private Networks (VPNs) and the
propagation of such disturbances to the normal functioning of
a simulated power grid.

The paper is organized as follows: Section II provides an
overview of related work, while the proposed approach is
detailed in Section III. Then, the performance of the proposed
ADS is evaluated in Section IV, and the paper concludes in
Section V.

II. RELATED WORK

Anomaly detection is a well established field of research.
For NCIs and especially for SCADA systems we can find
several approaches that can be categorized based on the
addressed NCI dimension: (i) approaches addressing the cyber
dimension; (ii) approaches addressing the physical dimension;
and (iii) approaches addressing both dimensions.



Most of the purely cyber-oriented approaches assume highly
deterministic communications patterns, which is a distinctive
characteristic of NCIs. The recent work of Pleijsier [5] shows
that by inspecting connection parameter patterns between
client and server stations we can detect abnormal communica-
tions behaviors in NCIs. In a similar way Barbosa, et al. [6]
and Garitano, et al. [7], proved that the periodicity of network
traffic in NCIs can be the basis for detecting anomalies in
the cyber dimension of NCIs. As shown in [3], the main
disadvantage of the previously mentioned approaches is that
an attacker might employ legitimate traffic flows with a dev-
astating effect on physical processes. Therefore, as proposed
in this paper, such techniques need to be coupled with the
physical dimension of NCIs in order to ensure an accurate
detection of both cyber and physical anomalies.

The presence of the physical dimension in the architecture
of NCIs opened the way for model predictive techniques to
be applied in detecting anomalies in the operation of physical
processes. In this direction, we find the work of Svendsen and
Wolthusen [8], [9] which employed physical process models
together with approaches from feedback control theory to
predict future states and ultimately to detect physical anoma-
lies. A similar approach has been developed by Cárdenas, et
al. [10], where a model of a chemical plant and feedback
control loops were used to predict the state of the physical
process and to detect attacks against NCIs. Although such
approaches might accurately detect the presence of anomalies,
they require a complete and highly detailed model of the
physical process, which is not always available. To address
this issue, the work of Nai Fovino, et al. [11], [12], [13] builds
on the assumption that every attack on NCIs will ultimately
lead to a transition of the system from a secure state to a
critical state. Although this approach eliminates the need of
a highly detailed physical process model it does not take into
account the cyber dimension of NCIs. Furthermore, since the
detection engine is running in the cyber space, it builds on
the assumption that communications with the physical process
sensors are always intact. However, disruptive cyber attacks
can cause the complete interruption of communications, which
will render this approach ineffective. In contrast, the approach
proposed in this paper takes into account not only evidence
from both dimensions of NCIs, but also the lack of it.

Finally, we mention approaches addressing both the cyber
and physical dimensions of NCIs. In [14], Raciti and Nadjm-
Tehrani proposed an alert aggregation technique that collects
data from cyber and physical sensors. Unfortunately the ap-
proach does not fuse the evidence from the two dimensions
and therefore a combined view with this technique is not
possible. Conversely, in [15], Levorato and Mitra proposed
a unified view of several smart grid dimensions, e.g., energy
market and weather conditions, by using sparse approximation
and wavelet theories. The approach is demonstrated to be
well-suited for high-level analysis of the smart grid, but it
might loose its effectiveness when dealing with low-level
aspects, e.g., detecting SYN attacks. Furthermore, since it
requires a priori training with real data, the technique could be

highly error-prone and might not detect anomalies generated
by malware that is already in place. In contrast, the technique
proposed in this paper fuses together the cyber and physical
dimensions of NCIs and most importantly it does not require
an initial training data set.

III. PROPOSED APPROACH: CYBER-PHYSICAL DATA
FUSION

After reviewing available data fusion mechanisms we se-
lected the Dempster-Shafer (D-S) “Theory of Evidence” based
on the following considerations. First, as we do not have
a good model for the normal network and physical system
we excluded physical methods, like the Kalman filter that
requires the knowledge of the state transition matrix. Second,
we avoided methods that make strong assumptions about the
measured data, like a naive Bayesian classifier that assumes
knowledge of the “a priori” probability distribution of the
observed random variables. Another factor that influenced our
choice was that the D-S approach allows the use of information
from multiple heterogeneous sources with different sensitivity,
reliability and false alarm rates. By using it, we were also able
to incorporate expert knowledge from network administrators,
without building an extremely complicated expert system.

D-S enables the combination of evidence generated from
multiple sensors, e.g., basic detection elements. Within the ar-
chitecture of the proposed Anomaly Detection System (ADS)
each sensor monitors, detects and reports its own perspective
(belief) of the observed cyber and/or physical attributes. The
beliefs of several sensors are then combined (fused) in order
to provide a unified view of the system state.

From our perspective, NCIs are seen as having a stochastic
behavior without assuming any underlying functional model.
The attempt to infer the unknown state of the system is
based on knowledge reported by sensors, that may have been
acquired based on totally different criteria. Possible sources of
information are signature-based IDS, custom DDoS detection
programs, control hardware, or physical sensors. Therefore,
the proposed technique could also be seen as complementary
to existing ADSs.

A. Overview of the Theory of Evidence

Dempster-Shafer’s “Theory of Evidence” can be considered
an extension of Bayesian inference. There are many different
ways to interpret the basic mathematical formulations of the
theory that was introduced by Shafer [16]. It can be viewed
either from a probabilistic or an axiomatic point of view and all
these approaches are concisely surveyed in [17]. Besides the
different theoretical approaches and interpretations, all of them
boil down to the same mathematical formulas. The “Theory
of Evidence” has been analyzed in the fields of statistical
inference, diagnostics, risk analysis and decision analysis. Our
methods and notations are mostly inspired from the field of
“Diagnostics” [18].

Let us have a set of possible states of a system
θ1, θ2, ..., θN ∈ Θ, which are mutually exclusive and complete



(exhaustive). The set Θ is often called the frame of discern-
ment. We will call hypotheses Hi subsets of Θ, in other words
elements of the powerset 2Θ. Our goal is to infer the true
system state without having an explicit model of the system,
just based on some evidence (measurements) E1, ..., EM . Such
evidence can be considered as hint (with some uncertainty)
toward some system state. Based on one evidence Ej we
assign a probability that it infers a certain hypothesis Hj . A
basic probability assignment (bpa) is a mass function m which
assigns beliefs in a hypothesis or as Shafer stated “the measure
of belief that is committed exactly to H” [16]:

m : 2Θ → [0, 1]. (1)

This membership function m has to satisfy the following
conditions:

m(∅) = 0 and m(H) ≥ 0,∀H ⊆ Θ and (2)∑
H⊆Θ

m(H) = 1 .

At this point we have to underline the flexibility and
advantages of this theory in contrast to the Bayesian approach,
where we can only assign probabilities on single elements of
Θ and not on elements of the powerset of the possible states.
This theory gives us the opportunity to model uncertainty and
the fact that some observations can distinguish between some
system states, while they might not be able to provide any hints
about others. For example, we might know that an evidence
points to hypothesis H = θ1, θ2 with a high probability but
on the same time it might provide no information (complete
ignorance) whether the system is in θ1 or θ2. Furthermore it is
crucial that the “Theory of Evidence” calculates the probability
that the evidence supports a hypothesis rather than calculating
the probability of the hypothesis itself (like the traditional
probabilistic approach).

We define Bel as a belief function related to a hypothesis
H:

Bel(H) =
∑
B⊆H

m(B). (3)

This definition says intuitively that a portion of belief
committed to a hypothesis B must also be committed to any
other hypothesis that it implies, i.e., to any H ⊇ B. A Belief
function has the following properties:

Bel(∅) = 0 and Bel(Θ) = 1. (4)

The Plausibility of H is defined as:

Pl(H) =
∑

B∩H 6=∅

m(B) (5)

and can be correlated to the doubt in the hypothesis H:

Doubt(H) = Bel(Hc) = 1− Pl(H), (6)

where Hc is the complement of H . Intuitively, this relation
means that the less doubt we have in a hypothesis H the
more plausible it is. Generally we can characterize Bel(H)

as a quantitative measure of all our supportive evidence and
Pl(H) as a measure of how incompatible our evidence is with
H in terms of doubt (refuting evidence). The true belief in H
lies in the interval [Bel(H), P l(H)]. Our degree of ignorance
is represented by the difference Bel(H)− Pl(H).

The second important element of Dempster-Shafer theory is
that it provides a rule to combine independent evidence E1, E2

into a single more informative hint:

m12(H) =

∑
B∩C=H m1(B)m2(C)∑
B∩C 6=∅m1(B)m2(C)

. (7)

Based on this formula we can combine our observations
to infer the system state based on the values of belief and
plausibility functions. In the same way we can incorporate new
evidence and update our beliefs as we acquire new knowledge
through observations.

“Theory of Evidence” makes the distinction between uncer-
tainty and ignorance, so it is a very useful way to reason with
uncertainty based on incomplete and possibly contradictory
information extracted from a stochastic environment. It does
not need “a priori” knowledge or probability distributions on
the possible system states like the Bayesian approach and as
such it is mostly useful when we do not have a model for our
system. In comparison with other inference processes, like first
order logic which assumes complete and consistent knowledge
and exhibits monotonicity or probability theory which requires
knowledge in terms of probability distributions, the “Theory
of Evidence” has a definite advantage in a vague and unknown
environment.

The “Theory of Evidence” from a computational point of
view is in worst case exponential, because Dempster’s rule of
combination (Eq. 7) requires to find all pairs of sets B,C such
that B∩C = H which is o(2|Θ|−|H|×2|Θ|−|H|). Thus it may
be hard to compute in the general case, although some efficient
algorithms for fast computation exist. Nevertheless for many
practical applications with few focal elements, an exhaustive
approach is still feasible.

B. Proposed Anomaly Detection System

Based on the Dempster-Shafer “Theory of Evidence” we
propose a novel architecture to enable anomaly detection in
cyber-physical systems. The proposed architecture, depicted
in Figure 1, illustrates the collection of data from both the
physical and cyber realms. The system fuses the knowledge
that is collected from the reports of various sensors in order to
infer the state of the system. One important aspect that should
be emphasized is that our sensors do not only collect data, but
they also provide a first level of detection. Their outputs are
translated to basic probability assignments which are fused by
the Dempster-Shafer inference engine.

As in any data fusion system, the performance of the
implementation depends on the selected sensors. Possible
cyber sensor types could include: TCP-SYN packet moni-
toring; UDP and ICMP packet monitoring; and router traffic
monitoring. For the physical dimension we can expand the list
with sensors monitoring physical parameters such as: pressure,
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Fig. 1: Architecture of the proposed Anomaly Detection Sys-
tem

temperature, liquid level, and valve position. Most importantly,
the flexibility of the “Theory of Evidence” allows engineers
to expand this list with other application-specific sensors.

In the proposed system we use Θ to denote the set of all
possible states of the system, also known as the Frame of
Discernment in the terminology of the “Theory of Evidence”.
Each sensor has the ability to detect a specific set of attacks
which can be expressed by defining a mass function m for 2
possible sets:
• the set H of states that the sensor can recognize or is

sensitive to, for which m(H) denotes the sensor’s belief
in the states from H;

• the set Θ as previously defined, for which m(Θ) denotes
the degree of uncertainty associated to this sensor.

It follows from equation 2 that m(H) +m(Θ) = 1. Based
on these assumptions engineers can use the modeling power
of “Theory of Evidence” to include expert knowledge about
each sensors’ detection ability. A simple guideline to help
engineers define individual m-values is shown in Figure 2.
The intuition behind this guideline is that although going over
and under certain thresholds leads us towards a quite certain
decision, in the interval between these low and high thresholds
our beliefs should be treated with an increased uncertainty.
Figure 2 shows two basic probability assignment possibilities.
Figure 2 (a) defines one threshold interval ([Tlow, Thigh])
and can be applied in scenarios such as TCP-SYN-flooding
attacks, where an increasing number of SYN-requests can
lead to a DoS attack. In this case the level of uncertainty
given by m(Θ) increases in between the two thresholds,
denoting the sensor’s uncertainty related to the value of m(H).
Figure 2 (b) defines two threshold intervals ([Tlow, Thigh] and
[T ′low, T

′
high]) and can be applied in the physical dimension

of NCIs, where parameters are usually bound to an interval,
e.g., steam pressure. In this case the uncertainty appears in
two different settings, as there are two threshold intervals.
Assuming a typical sensor, moving the curve up and to the
left yields a more sensitive sensor increasing possibly the
false positive alarm rate. On the other hand a down or right
movement makes the sensor less sensitive, increasing the false-
negatives. By condensing the curve along the x-axis we move
towards binary detection, whereas expanding it yields a sensor
with greater uncertainty but more sensitivity.

Besides the aforementioned issues, it is of utmost impor-
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Fig. 2: Generic guidelines to define basic probability assign-
ments: (a) Single -, and (b) dual - threshold interval

tance that the detection engine takes into account missing
evidence as well. In real scenarios communications packets
relevant to the decision process might be delayed or most
of the times dropped by networking hardware due to con-
gestions caused by disruptive cyber attacks. Furthermore, a
fully compromised sensor might not send any updates at all
to the detection engine, which needs to be properly modeled
and incorporated in the decision process. Within the proposed
ADS we model missing evidence by dynamically increasing
the degree of uncertainty m(Θ) for a given sensor. The
detection engine takes into account the last value reported
by a specific sensor, but with a dynamic uncertainty degree
that changes according to its freshness. Consequently, we
define a saturated linear increase of the uncertainty degree
m(Θ)τ ∈ [λmin, λmax] for time freshness τ such that:

m(Θ)τ =
λmax − λmin
tmax − tmin

(τ − tmin) + λmin, (8)

where λmin and λmax are the minimum and maximum pos-
sible values for m(Θ)τ , [tmin, tmax] is the freshness interval
on which the function is defined and τ is calculated as the
difference between the system time and the time stamp of the
last received value.

As a final note we mention that unlike in a purely cyber
system, within the context of NCIs, the properties of the
physical dimension open a different way for defining hypoth-
esis. More specifically, since the interactions within industrial
processes are governed by well-established laws of physics it is
possible to infer process states that are not directly monitored.
For instance, by simply measuring the pressure in a gas tank
we could also infer the temperature of the gas knowing that
there is a direct proportional dependency between the two.
Consequently, this provides a powerful way to define a larger
spectrum of hypothesis from a reduced set of physical sensors,
which in turn will lead to more accurate detections.

C. System Implementation Details

The authors’ previous experience [19] proves that real-time
simulation can be a powerful technique in the context of
experimental cyber security assessment of NCIs. Therefore, a
prototype of the data fusion engine was developed in Matlab
Simulink, since this is a general simulation environment
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for dynamic and embedded processes. From Simulink, we
generate the corresponding ’C’ code using Simulink Coder,
which is then integrated into the framework developed in our
previous work [19], [20]. Our previously developed framework
combines emulation testbeds based on Emulab [21], [20] with
real-time simulation in order to enable disruptive experiments
on physical processes while ensuring a high fidelity of the
cyber dimension. With this approach the model can interact
in real-time with the rest of the system, it can receive data
from real sensors and it can produce alerts according to the
implemented data fusion decision algorithm.

Prototypes of cyber and physical sensors have been devel-
oped in the Python scripting language. Typical cyber sensors
monitor network traffic throughput, a method also employed
by related work [6], [7], while physical sensors process packets
originating from control hardware in order to monitor the state
of the physical dimension.

IV. PERFORMANCE EVALUATION

In order to verify the validity of the proposed Anomaly
Detection System and to prove the superior performance of
data fusion over state of the art, we have conducted a series
of tests configured in a protected environment within our
laboratory. We recreated the typical architecture of an NCI
installation in which a simulated power grid is controlled
remotely [22] (Figure 3) and we launched several attacks that
test: (i) the detection of cyber anomalies; (ii) the detection
of physical anomalies; and (iii) the detection of cyber or
physical anomalies based on the combined evidence from the
two dimensions.

A. Description of the Experimental Scenario

The experimental scenario consists of a remotely controlled
power grid and several attacks causing severe telecommuni-
cations service degradation which propagates across Critical
Infrastructures. As illustrated in Figure 3 we define two
hypothetical sites. Site A runs a simplified model of an Energy
Management System (EMS) [23] to ensure voltage stability.
The EMS continuously monitors and adjusts the operational
parameters of the power grid model (IEEE 39-bus New

TABLE I: Sensors with hypothesis and monitored parameters

Type Count Hypothesis Monitored

H1
i ={PHYSICAL-Anomaly}

Physical 21 H2
i ={CYBER-Anomaly, NORMAL} Voltages

H3
i = Θ

H1
22 ={CYBER-Anomaly}

Cyber 1 H2
22 ={PHYSICAL-Anomaly, NORMAL} Throughput

H3
22 = Θ

England system) running at Site B. The daily load imposed
to our system derives from real data [24] and the intervention
of the EMS is required to keep the grid stable.

To provide a realistic communications infrastructure be-
tween the EMS and power grid simulator we assumed that
the service provider uses an MPLS (Multi Protocol Label
Switching) network. MPLS is a protocol that telco operators
already use to replace older implementations based on Frame
Relay and Asynchronous Transfer Mode (ATM) [25]. We cre-
ated a minimal MPLS network with four Cisco 6503 routers,
on which we defined two MPLS Virtual Private Networks
(VPNs). VPN 1 acted as a protected virtual circuit between
Site A and Site B, an approach that is usually followed by
telco operators to isolate customer traffic. Since telco operators
route diverse traffic, e.g., public Internet traffic, through the
same MPLS cloud, we used VPN 2 to create a virtual circuit
between two different “public” regions.

The Anomaly Detection System monitors the network traffic
and the state of the grid by processing packets passing through
the edge router of Site A. The detection engine detects both
cyber and physical anomalies by monitoring network traffic
throughput and power grid voltages.

B. System States and Threshold Intervals

In order to illustrate the applicability of the approach we
defined the following system states: Θ ={CYBER-Anomaly,
PHYSICAL-Anomaly, NORMAL}. Based on the proposed
guidelines for basic probability assignments and several trial
and error procedures for tuning the system parameters we
have designed two types of sensors, as depicted in Table I. 21
Physical sensors monitor voltages on 21 different substations.
Physical sensors can clearly detect a physical anomaly by
inspecting voltage levels, but cannot distinguish between a
cyber anomaly and a normal state. On the other hand, we
defined one Cyber sensor that monitors the network throughput
and can clearly detect a cyber anomaly, but it is unable to say
anything about a physical anomaly or to clearly identify a
normal system.

For both sensor types we defined two threshold intervals
since the monitored parameters from both the cyber and
the physical dimensions must remain within well-defined
boundaries. For physical sensors we used [Tlow, Thigh] =
[0.86, 0.92] and [T ′low, T

′
high] = [1.08, 1.12] (in p.u.), since

operators usually run the electrical grid with voltage levels
that range from 0.9 p.u. to 1.1 p.u.. For the cyber sensor we
used [Tlow, Thigh] = [160, 200] and [T ′low, T

′
high] = [320, 400]
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Fig. 4: Detection of cyber attacks: (a) Cyber attack throughput,
(b) effect on the industrial customer throughput, and (c) the
detection of the attack

(in Kbps), since the average measured throughput was of
224Kbps, but at the same time we measured random bursts
reaching up to 336Kbps that were caused by delayed replies
originating from the power grid simulator.

C. Detection of Cyber Anomalies

We launched several random bandwidth consuming DDoS
attacks using typical tools such as TCPReplay and Scapy in
VPN 2 and we measured their effect on the industrial network
traffic in VPN 1. Each attack ran for 10 seconds and consumed
close to 1Gbit/s of communications bandwidth (see Figure 4
(a)).

The effect of the attack on the network traffic in VPN 1
can be clearly seen in Figure 4 (b), where we observe two
types of changes in the network throughput: (i) normal bursts,
caused by delayed replies from the power grid simulator, and
(ii) network bursts caused by the attack. In the later case we
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Fig. 5: Detection of attacks on physical processes: (a) Physical
attack through dynamic load shedding, (b) effect on power grid
voltages, and (c) the detection of the attack

see that bursts are preceded by a reduction of the network
throughput, which is the expected behavior for congested links.

The changes in the network throughput are successfully
detected by the proposed ADS. As shown in Figure 4 (c)
for a threshold of 0.5 the detection engine can accurately
identify cyber anomalies and can filter out normal network
traffic bursts. For the first case the CYBER-Anomaly Basic
Probability Assignment (BPA) increases well-above the 0.5
threshold and reaches a value of 0.92, which is clearly a sign
of a cyber anomaly. Normal traffic bursts are also visible in
this figure. However, since in these cases the BPA increases
only up to 0.2, they are not detected as cyber anomalies.

As a final note we should underline the fact that the imple-
mented attack also illustrates that MPLS VPNs alone cannot
ensure a proper isolation between virtual circuits. For this
purpose Telco operators usually implement well-established
mechanisms such as Quality of Service (QoS) and network
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Fig. 6: Separate cyber & physical anomaly detection vs data fusion-based anomaly detection

traffic engineering. Nevertheless, such protective measures
are not compulsory, e.g., through policies and regulation.
Therefore, the severe risks that are involved if such protective
measures are not implemented were clearly demonstrated by
this particular phase in our experiment which highlighted the
potential impact of ICT disruptions. More information on this
topic and similar studies can be found here [22], [26], [27].

D. Detection of Physical Anomalies

The attack on the physical process, i.e., the simulated
power grid, exploits the remote control capabilities of control
hardware. Within our laboratory we recreated a hypothetical
scenario in which the attacker forges several control packets
and injects them into the control network of several substations
in order to dynamically shed loads at a specific time of day.
In this procedure we used legitimate packets (similar to those
used by the EMS) to trigger load shedding for short time
periods, i.e., 0.2s, at five different substations.

As shown in Figure 5 (a) the daily load exhibits significant
loss of load, which triggers over-voltages in the electricity
grid, shown in Figure 5 (b). The effects of such an attack are
obvious. Excessively high voltage levels can trigger protective
mechanisms, e.g., circuit breakers, to disconnect devices from
the grid. However, they can also cause short-circuits and
can damage vital equipment, which could lead to cascading
failures propagating to the entire grid.

The implemented ADS monitors the state of the physical
process and successfully detects the attacks on it. As shown
in Figure 5 (c), the dynamic load shedding attack causes the
PHYSICAL-Anomaly BPA to increase up to 1, which is a clear
indication of a physical anomaly. Although the cyber attack is
not detected, since it is launched from a separate network that
is not monitored (see the experimental setting in Figure 3), the
ADS is able to trigger alarms caused by a physical anomaly.

E. Fusion vs Separated Cyber-Physical Anomaly Detection

Based on the results presented so far we can clearly state
that the performance of the proposed ADS depends on the
quality of sensors and that of additional ADSs that are
supplying evidence to the data fusion engine. However, as
already stated, the added-value of data fusion over existing
ADSs is that it can combine evidence from various sensors
and provide an aggregated view of the system. In the context
of cyber-physical systems the ADS fuses together evidence
from the cyber and physical dimensions and, as shown in the
remaining of this section, it provides a more effective detection
of anomalies.

For illustration purposes we ran a slightly modified version
of the dynamic load shedding attack mentioned in the previous
section. The attack was launched in VPN 1 and was imple-
mented to cause load shedding in only one substation, thus
providing a more “subtle” version of the previous attack that
would not trigger alarms with regular ADSs.

As shown on the left side of Figure 6, the industrial traffic
throughput increases to an average of 330Kbps, while voltages
exhibit a barely visible increase. On the right side of Figure
6 we can see that existing approaches, i.e., that separate the
cyber realm from the physical, might effectively detect cyber
attacks. However, attacks on the physical process will not be
detected. Conversely, the proposed ADS fuses the evidence
from the cyber and physical dimensions, which leads to the
detection of the physical attack as well. As shown in Figure
6, in this case the PHYSICAL-Anomaly BPN increases above
the detection threshold up to 0.6, which is clearly a sign of a
physical anomaly. It should be noted that in this particular case
the cyber sensor provides a significant amount of evidence
for detecting the physical anomaly. This is mainly due to
hypothesis H2

22, which states that in case there is no cyber
anomaly the sensor cannot distinguish between a physical
anomaly and a normal state. Consequently, this brings an
additional proof that there might be a physical anomaly, which



is then fused together with the evidence provided by physical
sensors and leads to the aforementioned detection.

The two attack scenarios presented in this section proved
that data fusion can be a good candidate for implementing
anomaly detection in complex multi-dimensional systems such
as NCIs. Furthermore, it should be noted that although the
study was limited to these two types of attacks, i.e., Denial of
Service and packet forging, the proposed ADS can also detect
other, possibly unknown attacks, i.e., zero-day attacks, on the
cyber or physical dimension of NCIs. This is mainly due to
the specific characteristics of ADSs that, opposed to signature-
based intrusion detection systems, perform system monitoring
in search for anomalous states that could trigger alarms.

V. CONCLUSION

We proposed a novel approach to detect anomalies in
cyber-physical systems by combining reports of various cyber
and physical sensors using Dempster-Shafers’ “Theory of
Evidence”. In the proposed Anomaly Detection System (ADS)
sensors act as autonomous agents that send periodic reports
to a central unit that fuses together evidence from the cyber
and physical dimensions and provides a unified view of the
entire system. Consequently, the combined knowledge from
the majority of sensors can effectively filter malicious/missing
reports from compromised/defective sensors and can indicate
an increased belief of an anomaly state. The validity and
effectiveness of the proposed ADS were demonstrated by
experimental results conducted on a simulated power grid and
communications infrastructure based on real Multi Protocol
Label Switching (MPLS) Virtual Private Networks (VPNs).
The results also confirmed the superior performances of data
fusion-based ADS over separated cyber and physical ADS. As
future work we intend to continue to enhance the proposed
ADS with automated parameter tuning techniques and to
integrate existing ADSs with the proposed detection engine.
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