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Abstract — We present a method for creating security 

protocols, based on message composition. The novelty of our 
approach is that it uses existent protocols to build new ones. 
Another benefit of the approach is that it maintains at the 
same time the security properties of all the involved protocols. 
The approach is based on an extension of the strand space 
model, which allows an atomic treatment applied on all 
messages. Using the proposed strand-based model and 
composition algorithms we illustrate the approach by creating 
a new protocol from two existing security protocols. 
 

Keywords — Composition, Security Protocols, Strand 
Spaces. 
 

I. INTRODUCTION 

Security protocols are communication protocols in 
which participants use encryption to send each other 
encoded information. With the rapid growth of the Internet 
and a desperate need to secure communication, in the last 
few decades the attention of many researchers has been 
focused towards analyzing security protocols [1]-[2]-[3]-
[4]-[5]-[6]. 

Recently, there have been several proposals developed 
to help the process of security protocol design using formal 
methods and tools [7]-[8]-[9]-[10]-[11]-[12]-[13]. Most of 
the proposed techniques use a modular approach in the 
design process, where the user is given a set of small 
protocols from which more complex protocols can be 
constructed, process also known as composition [9]-[10]-
[11]. 

In the existing composition techniques, authors mainly 
deal with the sequential and parallel composability of 
security properties viewed as a set of information 
transmitted over messages. However, the composition of 
message components has not been addressed in a proper 
manner, meaning that users have to solve the problem of 
resulting message term duplicates on their own. 

Solving this problem, apparently insignificant, can lead 
to protocols executed in half the time the original, 
composed protocols are executed in. In addition, the 
composition process can lead to multiple results, which 
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must be carefully analyzed on a message level to increase 
protocol performance. 

In this paper, we address the composability problem at 
the message level. We introduce the concept of binding to 
capture the link between message terms. Based on these, 
we propose a formal specification of security protocols. 
The composition process is reduced to analyzing similar 
bindings, inserting new ones or simply extending existent 
bindings. 

However, changing the position of bindings in a security 
protocol can be rather problematic if we consider that a 
protocol may also consist of messages that cannot be 
decrypted by the receiving party, because the key is not in 
his possession. Also, there are cases when the structure of 
a term must not be changed because, for example, the 
receiving party does a byte-to-byte verification of the 
received term, without actually decrypting it. 

To solve these problems, the proposed specification 
contains not only the messages exchanged by parties, but 
also a set of knowledge attached to each specified role so 
that in the composition process we can check which 
messages can be constructed and sent. 

The rest of the paper is structured as follows. Section II 
introduces the concept of bindings. Based on these, we 
provide a formal specification of security protocols in 
section III. In section IV, we present a simplified 
composition algorithm based on the proposed formal 
specification. In section V we provide an example 
composition of two protocols. We end with a conclusion 
and future work in section VI. 

II.  FORMALIZING BINDINGS 

A.  Existent bindings 

A closer examination regarding the structure of security 
protocol messages reveals a tight connection between 
components. For example, let us consider the following 
message extracted from Lowe’s modified “BAN concrete 
Andrew Secure RPC” [14] protocol: 

{ }A B: Na,K ab,B Kab′→  

Here, role A is sending to role B a session key. B is 
ensured that the message is for him by including B’s name 
in the message. Role B is also ensured about the fact that 
the message is fresh, because it contains the newly 
generated nonce (i.e. “number used once”) Na. The newly 
generated key is encoded with the long-term key Kab, 
which also ensures B (together with Na) that role A is the 
one who is actually sending the message. 
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We can see that this message is atomic; neither of its 
components can be separated and sent alone encrypted 
with the long-term key without losing the properties 
intended in the design process. For example, the message 
loses its security property (i.e. freshness of the session key) 
if the components are separated, because the intruder, even 
if Kab is not in his possession, can still separate and 
concatenate encrypted messages: 

{ } { }A B: Na,K ab Kab, B Kab′→  

On the contrary to the removal or separation of terms, 
by adding terms to an encrypted message, the security 
properties are maintained and the message gains additional 
new properties. For example, by adding A’s name to the 
encrypted message: 

{ }A B: A,Na,K ab,B Kab′→ , 

the new message is linked to role A not only through the 
key Kab, but also through the newly included term A. 
 

B. Formalizing terms and bindings 

In this section we formalize the concept of bindings. 
Before getting into the formal specification, we need to 
define several basic sets and components used din the 
construction of bindings. 

By analyzing security protocol messages, we realize that 
messages are mostly constructed from role names (i.e. 
participant names), nonces (i.e. numbers used once to 
ensure message freshness, including timestamps), keys 
(both session and long term keys, including public-private 
key pairs) and encryption functions (e.g. symmetric, 
asymmetric, hash). 

Thus, we define the following basic sets, from which 
messages and our bindings are later constructed: R, 
denoting the set of role names (i.e. protocol participant 
names); N, denoting the set of nonces and K, denoting the 
set of cryptographic keys. The set of all subsets is denoted 
by: R* for role names; N* for nonces and K* for 
cryptographic keys. To represent an empty sub-set, we use 
the ‘.’ symbol. 

Every binding also contains a function and a key used to 
create the original encrypted message. When dealing with 
plain (i.e. unencrypted) messages we use the ‘.’ symbol for 
both the function name and key. 

The encryption functions used to create cryptographic 
terms are formally defined as: 
 

FuncName ::= sk         (secret key) 
         |  pk      (public key) 

      |  pvk                   (private key) 
      | h      (hash) 
      | .       (no function) 

 
Using the mentioned sets, terms are defined as follows. 
 

( )
{ } ( )

::= . | | | | ,

           | 
FuncNameT

T  T T

T

R  N  K  
 

 

To denote the set of all sub-sets of terms we use the ∗
T  

symbol. 
By simply creating bindings from terms we lose the 

position of each component. However, the position cannot 
be neglected because a simple modification may lead to a 
serious attack (e.g. type flaw attacks [4]-[5]-[6]). This is 
why a binding also has to contain the structure of the term. 
For this purpose we use a canonical representation based 
on typed terms, as already introduced by the authors in 
[17]. 

Typed terms denote the type of each message component 
and they are defined as follows: 
 

= r   (  )

       | n   (  )

       | k   (  )

       | b   (  )

role type

nonce type

key type

binding type

t
T  ::

 

 
To denote the set of all subsets of typed terms that can 

be constructed, we use the ∗
t
T  notation. In this case also, 

we use the ‘.’ symbol to denote an empty set. 
Now, having defined all the components needed, we can 

provide the definition of bindings. 
 
Definition 1. A binding is a tuple written as 

, , , , , ,f kρ ν κ β θ , whereρ ∗∈R , ν ∗∈N , κ ∗∈K , β ∗∈B , 

f FuncName∈ , k ∈K  and θ ∗∈
t
T .  We use the B symbol 

to denote the set of all bindings and the symbol ∗B  to 
denote the set of all subsets of bindings. The ‘.’ symbol is 
used to denote an empty binding set. 

1. To obtain the components of a binding b, we use 
the following projection functions: 

( ) ( ) ( )
( ) ( ) ( )

( )

      , , ,

, , ,

                         

Roles b Nonces b Keys b

Bindings b Func b f BindingKey b k

TypeSet b

ρ ν κ
β

θ

= = =

= = =

=

 

2. The binding composition operator 
_ _ :+ × →B B B  composes all subsequent 

components using set operators;  
3. The sub-binding operator ⊏ is defined inductively 

as follows: 
b ⊏ b  
b1 ⊏ b2 if ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 2

1 2

1 2

1 2

1 2

1 2

Roles b Roles b

Nonces b Nonces b

Keys b Keys b

Bindings b Bindings b

Func b Func b

BindingKey b BindingKey b

⊆ ∧

⊆ ∧

⊆ ∧

⊆ ∧

= ∧

=

 

 
An example specification of a binding is the following 

specification of a message from Lowe’s modified “BAN 
concrete Andrew Secure RPC” [14] protocol: 

{ }Na,K ab,B Kab′  
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|| 

{ }, , ,., , , , ,B Na Kab sk Kab n k r  

III.  FORMALIZING THE PROTOCOL SPECIFICATION 

In this section we provide a formal specification of 
security protocols combining the mentioned bindings with 
the strand space model proposed by Guttman et all in [15]. 

A. B-Strand spaces and B-Protocols 

A strand is a sequence of send and receive events. A 
strand space is a collection of strands. Thus, protocol 
participants are modeled as strands and a protocol is 
represented as a strand space. 

In the remaining of this section we provide a slightly 
modified (i.e. adapted) definition of the strand space 
model, that we call b-strand space. In the proposed model, 
the roles exchange bindings constructed from the original 
terms. 

Strands are usually used to represent roles. However, 
they can also be used to represent internal operations 
specific to roles, such as encryption, decryption or memory 
storage. Unlike in the original model, we need to 
determine the type of every b-strand included in the 
specification. Because of this, before defining b-strands, 
we need to define the set of classifiers consisting of 
predefined symbols that can later be extended if needed: 
 

( )
( )

::

|

Role classifier

Knowledge classifier

=
R

K

C C

C

 

 
To denote the sending and receiving of terms, the 

original strand space model introduces signed terms. The 
appearance of a positive term denotes transmission and the 
appearance of a negative term denotes reception. Similarly, 
in the proposed model, a positive binding denotes sending 
and a negative binding denotes reception. A signed binding 
is also known as a node. 

Next, we provide the definition for signed bindings and 
then proceed with the definition of b-strands and b-strand 
spaces. 

   

Definition 1. A signed binding is a pair ,bσ  with 

b∈B and σ one of the symbols +, -. A signed binding is 

written as –b or +b. ( )*±B  is the set of finite sequences of 

signed bindings. A typical element of ( )*±B  is denoted by 

1 2, , , nb b b± ± ±… , with ib ∈B . 

 

Definition 2. A b-strand ( ):s
∗± ×B C  is a sequence of 

binding transmissions and receptions attached to a strand 
classifier. A set of b-strands is called a b-strand space and 
is represented as Σ. We use the *Σ  symbol to denote a set 
of b-strand space subsets. 

1. A node is any transmission or reception of a 
binding, written as ,in s i= , with s∈Σ  and i an 

integer satisfying the condition 1 ( )i length s≤ ≤ , 

where ( )length s  is a function returning the 

number of nodes from a b-strand. The set of all 
nodes is denoted by N. 

2. Let 
1 ,n s i=  and 

2 , 1n s i= +  be two 

consecutive nodes from N on the same b-strand s. 

Then, there exists an edge 1 2n n⇒  in the same 

b-strand s. 
3. Let 

1 2,n n ∈N . If n1 is positive and n2 is 

negative, and 1 2( ) ( )bstrand n bstrand n≠ , then 

there exists an edge 
1 2n n→ . 

4. Let n∈N . Then ( )sign n is a function returning 

the sign and ( )binding n  is a function returning 

the binding corresponding to a given node. 
5. Let s∈ Σ  with ,Ss cβ= . Then we define the 

following projection functions: 

( )1 Ss β=     ( )2
s c=  

 
Definition 3. A role specification is a pair ,r ξ , such 

that r ∈R  and ξ ∗∈Σ . Let rS be a role specification. Then 

Role(rS) is a projection function returning the role name 
and BStrands(rS) is a projection function returning the set 
of b-strands corresponding to a role specification. 

A set of role specifications is denoted by RoleSpec and 
RoleSpec* denotes the set of all subsets of role 
specifications. 

 
Simply specifying the sequence of messages for a 

protocol is not enough. A specification must also include 
initial role knowledge defined as follows. 

 
Definition 4. Role knowledge is a pair ,r b , where 

r ∈R  and b∈B , such that Func(b)=BindingKey(b)= . . 
We use RoleKnow to denote a set of role knowledge and 
RoleKnow* to denote the set of all subsets of role 
knowledge. 

 
Thus, a protocol based on bindings (also called a 

binding protocol, or simply b-protocol) is defined as a set 
of role knowledge attached to a set of role specifications: 
ProtSpec = RoleKnow RoleSpec∗ ∗× . 

To exemplify the specification of a protocol in the b-
strand space model, we use Lowe’s modified “BAN 
Concrete Secure RPC” protocol [14]. The regular protocol 
specification and the resulting b-strand model are 
presented in Fig. 1. 

In the given example, there are two b-strands (Fig. 1(b)): 
one corresponding to role A (i.e. sA) and one 
corresponding to role B (i.e. sB). For the given b-strands: 

( )A 2
s =

R
C , ( )A 3

s A= , ( )B 2
s =

R
C , ( )B 3

s B=  

 

6th RoEduNet International Conference 2007 



 

 67 

{ }
{ }

b

Ka

Ka

a

NAB

NBA

BKNAB

NABA

AB

:

:

,,:

,:

→
→
→
→

 

(a) 

 
(b) 

Figure 1. Lowe’s protocol 
(a) Regular specification (b) B-Strand space 

specification 

B. Constructing knowledge b-strands 

Although the specification model from the previous 
section includes initial role knowledge, this knowledge can 
change from one received binding to another. Because of 
this we also need to model the knowledge available for 
each node to construct the next binding. 

Knowledge is modeled as a b-strand included in a role 
specification. Thus, a role specification consists of zero or 
more knowledge b-strands (i.e. b-strands having the 
classifier equal to 

K
C ) and one or more role b-strands (i.e. 

b-strands having the classifier equal to
R
C ). For example, 

in Fig. 1(b) the specification includes zero knowledge b-
strands and one role b-strand for each role. 

The purpose of knowledge b-strands is to explicitly 
represent the relationship between positive nodes (i.e. 
sending nodes) and the knowledge extracted from received 
terms. We create knowledge b-strands from an existing b-
protocol specification.  

Knowledge is viewed as being private to each role and 
inaccessible by other roles. To model the concept of 
private knowledge, we consider that bindings exchanged 
between role b-strands and knowledge b-strands inside a 
role specification have a unique binding function “kenc” 
and a unique key corresponding to every role-knowledge 
b-strand pair. This key is included in the initial knowledge 
for each role. 

The function name definition is thus extended with 
“kenc”: 
 

FuncName ::= FuncName 
       | kenc    (knowledge encryption) 

 
The construction algorithm receives as input an existing 

specification and generates the corresponding knowledge 
b-strands and role b-strands. Given an existing protocol 
specification, the knowledge b-strand construction 

algorithm is the following: 
 
Knowledge b-strand construction algorithm: 
LET P={ RK, RS} be a protocol specification 
LET RSConstr be an empty set of role specifications  
FOR EACH 

Sr RS∈  

  ( ),Constr Ss getInitialB r RK= +  

 ( ),KConstr Ss getInitialB r RK= −  

FOR EACH ( )( )
1

,Sn getBStrand r∈
R
C  

  IF ( )sign n = +  

   ( ), ,Constr Constr KConstrs s getKnowB s n= −  

   ( ),KConstr KConstr KConstrs s getKnowB s= +  

     ELSE 

( ), ,Constr Constrs s n binding n= +  

( ),KConstr KConstrs s binding n= −  

     ENDIF 
  ENDFOR 

 , ,Constr Constr Constr KConstrRS RS s s=  

ENDFOR 

 

In the construction process, a received binding generates 
an additional node transmitting a binding to the knowledge 
b-strand. A transmitted binding, however, generates a 
receiving node from the knowledge b-strand, denoting the 
causality between role knowledge and binding 
transmission. 

The getInitialB function returns the initial knowledge 
binding for the given role specification. This is then used 
to initialize the role and knowledge b-strands, thus 
modeling in a natural way initial role knowledge. 

The getKnowB function is used to return the 
accumulated knowledge binding from the knowledge b-
strand. Because knowledge is accumulative, for every 
binding received by knowledge b-strands, a new 
knowledge binding is constructed and emitted. Also, for 
every received binding, the existing knowledge is checked 
for knowledge that can be extracted from internal bindings 
(e.g. the case of bindings corresponding to terms that can 
only be decrypted later, when the decryption key is 
received). 

We used the getBStrand function to return a set of b-
strands from a role specification, given a b-strand 
classifier. 

IV.  COMPOSITION ALGORITHM 

In this section we provide a composition algorithm for 
generating new security protocols. 

The composition algorithm starts with the creation of 
knowledge b-strands for each role specification, given the 
b-strand specification of the involved protocols. This is 
done using the proposed algorithm from the previous 
section. 
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Next, based on the created b-strands, a sequential search 
is started to find an “appropriate” place for each binding 
from one specification in the other protocol specification. 
Here, “appropriate” means the satisfaction of several 
requirements, such as existent knowledge (returned by the 
accumKnow function) and the existence of the same 
sequence of predecessor nodes (returned by the 
predNodeSeq). 

However, not all nodes can be placed in the other 
protocol, because there may be cases when the 
requirements are not satisfied. In this case, the third step of 
the algorithm simply concatenates the remaining nodes 
unchanged to the end of the destination specification. 

A more detailed description of the algorithm is the 
following: 
 
Composition algorithm: 
LET 

1Sr , 
2Sr  be two role specifications from different b-

protocols such that ( ) ( )2 1S SRole r Role r=  

LET ( )ProcNodes
∗∈ ±B  be a set containing the 

processed nodes, initially empty 
1. Create knowledge b-strands 

2. FOR EACH ( )( )2 2 1
,Sn getBStrand r∈

R
C , 

      ( )( )1 1 1
,Sn getBStrand r∈

R
C , 

      ( )2sign n = + , ( )1sign n = +  

  ( )1 1b binding n=  

( )2 2b binding n=  

  IF  
2n ProcNodes∉   AND 

( )2 ' 'Func b kenc<>  AND 

( )( )1 ' 'Func binding n kenc<>  AND 

    ( ) ( )2 1destRole n destRole n=  AND 

   ( )2accumKnow n ⊏ ( )1accumKnow n  AND 

   ( ) ( )2 1predNodeSeq n predNodeSeq n⊆  

     
1 1 2b b b= +  

     

( )( )
( )( )

( )

1

1

2

           

           

accumKnow destNode n

accumKnow destNode n

accumKnow n

=

+  

     { }2ProcNodes ProcNodes n= ∪  

    ENDIF 
    ENDFOR 

3. FOR EACH ( )( )2 1
,Sn getBStrand r∈

R
C  

  IF n ProcNodes∉  AND 

( )( ) ' 'Func binding n kenc<>  AND 

( )sign n = +  

( )
( )

1

1

,

             , ,

S

S

getBStrand r

getBStrand r n

=
R

R

C

C

 

  ENDIF 
   ENDFOR 
 

By running the algorithm, there may result multiple 
possibilities for creating the new protocol. In fact, if we 
want to step through all possible forms of the constructed 
protocol, the presented algorithm should be included in a 
backtracking algorithm. However, the backtracking 
algorithm must have an evaluation function, which can 
include a combination of several criterias, such as binding 
size, number of sent/received bindings or total number of 
bindings for which ( )( ) '. 'Func binding n <> . 

V. EXAMPLE COMPOSITION 

In this section we provide an example composition of 
two different security protocols. Because of space 
considerations, we left out from the specifications the 
representation of knowledge b-strands. 

 
Figure 2. The “Woo and Lam Pi 3” authentication protocol 

representation in the b-strand space model 
 

 
Figure 3. Lowe’s modified version of the Yahalom 
protocol represented in the b-strand space model 

 
The first protocol is the “Woo and Lam Pi 3” security 

protocol [16] (Fig. 2). This protocol was designed to 
provide a one-way authentication. Namely, role A proves 
his authenticity to role B through the trusted server S. 

The second protocol is Lowe’s modified version of the 
Yahalom protocol [18] (Fig. 3). This protocol, as 
mentioned by the designers, provides a mutual 
authentication between roles A and B and a session key 
distribution. The authentication of role B to role A is done 
using the third message from the specification sent from 
the server S to role A. The authentication of role B to role 
A is intended with messages four and five. However, 
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because message four is not linked to the current run (i.e. it 
does not contain the nonce Nb), the authentication 
sequence can be attacked, as proven by Paulson in [19]. 

The scope of the composition is to provide a mutual 
authentication and a key exchange protocol. By applying 
the composition algorithm from the previous section we 
can generate a new strengthened protocol, which provides 
mutual authentication of the involved roles and key 
exchange (also solving the problem reported by Paulson). 
The resulting protocol can be seen in Fig. 4. 

 
Figure 4. The composed protocol 

VI.  CONCLUSIONS 

We have presented a method for security protocol 
message composition. The novelty of our method is the 
message-level approach, which allows the composition of 
existing security protocols without having to formulate 
additional security properties. The composition results in a 
strengthened protocol that embodies the sum of the 
security properties contained in the separate protocols. 

We did not provide, however, a powerful composition 
algorithm to evaluate and chose the most adequate 
resulting security protocol. However, the model described 
in this paper can be used in conjunction with other, more 
complex algorithms, which the authors intend to include in 
their future research agenda. 

In this paper we also proposed a performance evaluation 
criteria based on binding dimensions and enumeration. 
This can be replaced, however, with a more powerful 
practical model that also allows, for example, a 
comparison between the complexity of the encryption 
function and key. 

Also, because the composition process can become 
rather complex even when dealing with two protocols, we 
intend to implement in the future an automated 

composition tool. 
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