

 64

Abstract — We present a method for creating security

protocols, based on message composition. The novelty of our
approach is that it uses existent protocols to build new ones.
Another benefit of the approach is that it maintains at the
same time the security properties of all the involved protocols.
The approach is based on an extension of the strand space
model, which allows an atomic treatment applied on all
messages. Using the proposed strand-based model and
composition algorithms we illustrate the approach by creating
a new protocol from two existing security protocols.

Keywords — Composition, Security Protocols, Strand
Spaces.

I. INTRODUCTION

Security protocols are communication protocols in
which participants use encryption to send each other
encoded information. With the rapid growth of the Internet
and a desperate need to secure communication, in the last
few decades the attention of many researchers has been
focused towards analyzing security protocols [1]-[2]-[3]-
[4]-[5]-[6].

Recently, there have been several proposals developed
to help the process of security protocol design using formal
methods and tools [7]-[8]-[9]-[10]-[11]-[12]-[13]. Most of
the proposed techniques use a modular approach in the
design process, where the user is given a set of small
protocols from which more complex protocols can be
constructed, process also known as composition [9]-[10]-
[11].

In the existing composition techniques, authors mainly
deal with the sequential and parallel composability of
security properties viewed as a set of information
transmitted over messages. However, the composition of
message components has not been addressed in a proper
manner, meaning that users have to solve the problem of
resulting message term duplicates on their own.

Solving this problem, apparently insignificant, can lead
to protocols executed in half the time the original,
composed protocols are executed in. In addition, the
composition process can lead to multiple results, which

This work is part of research grant nr. 2445/10.07.2007 entitled

“Contributions to security protocol composition using performance
criteria” with the “Petru Maior” University of Targu Mures.

1 Genge Bela is with the Faculty of Electrical Engineering, “Petru
Maior” University of Targu Mures, Romania (e-mail: bgenge@upm.ro).

2 dr. Haller Piroska is with the Faculty of Electrical Engineering,
“Petru Maior” University of Targu Mures, Romania. (e-mail:
phaller@upm.ro).

must be carefully analyzed on a message level to increase
protocol performance.

In this paper, we address the composability problem at
the message level. We introduce the concept of binding to
capture the link between message terms. Based on these,
we propose a formal specification of security protocols.
The composition process is reduced to analyzing similar
bindings, inserting new ones or simply extending existent
bindings.

However, changing the position of bindings in a security
protocol can be rather problematic if we consider that a
protocol may also consist of messages that cannot be
decrypted by the receiving party, because the key is not in
his possession. Also, there are cases when the structure of
a term must not be changed because, for example, the
receiving party does a byte-to-byte verification of the
received term, without actually decrypting it.

To solve these problems, the proposed specification
contains not only the messages exchanged by parties, but
also a set of knowledge attached to each specified role so
that in the composition process we can check which
messages can be constructed and sent.

The rest of the paper is structured as follows. Section II
introduces the concept of bindings. Based on these, we
provide a formal specification of security protocols in
section III. In section IV, we present a simplified
composition algorithm based on the proposed formal
specification. In section V we provide an example
composition of two protocols. We end with a conclusion
and future work in section VI.

II. FORMALIZING BINDINGS

A. Existent bindings

A closer examination regarding the structure of security
protocol messages reveals a tight connection between
components. For example, let us consider the following
message extracted from Lowe’s modified “BAN concrete
Andrew Secure RPC” [14] protocol:

{ }A B: Na,K ab,B Kab′→

Here, role A is sending to role B a session key. B is
ensured that the message is for him by including B’s name
in the message. Role B is also ensured about the fact that
the message is fresh, because it contains the newly
generated nonce (i.e. “number used once”) Na. The newly
generated key is encoded with the long-term key Kab,
which also ensures B (together with Na) that role A is the
one who is actually sending the message.

Bindings for Security Protocol Message
Composition

Genge Bela1, Haller Piroska2

6th RoEduNet International Conference 2007

 65

We can see that this message is atomic; neither of its
components can be separated and sent alone encrypted
with the long-term key without losing the properties
intended in the design process. For example, the message
loses its security property (i.e. freshness of the session key)
if the components are separated, because the intruder, even
if Kab is not in his possession, can still separate and
concatenate encrypted messages:

{ } { }A B: Na,K ab Kab, B Kab′→

On the contrary to the removal or separation of terms,
by adding terms to an encrypted message, the security
properties are maintained and the message gains additional
new properties. For example, by adding A’s name to the
encrypted message:

{ }A B: A,Na,K ab,B Kab′→ ,

the new message is linked to role A not only through the
key Kab, but also through the newly included term A.

B. Formalizing terms and bindings

In this section we formalize the concept of bindings.
Before getting into the formal specification, we need to
define several basic sets and components used din the
construction of bindings.

By analyzing security protocol messages, we realize that
messages are mostly constructed from role names (i.e.
participant names), nonces (i.e. numbers used once to
ensure message freshness, including timestamps), keys
(both session and long term keys, including public-private
key pairs) and encryption functions (e.g. symmetric,
asymmetric, hash).

Thus, we define the following basic sets, from which
messages and our bindings are later constructed: R,
denoting the set of role names (i.e. protocol participant
names); N, denoting the set of nonces and K, denoting the
set of cryptographic keys. The set of all subsets is denoted
by: R* for role names; N* for nonces and K* for
cryptographic keys. To represent an empty sub-set, we use
the ‘.’ symbol.

Every binding also contains a function and a key used to
create the original encrypted message. When dealing with
plain (i.e. unencrypted) messages we use the ‘.’ symbol for
both the function name and key.

The encryption functions used to create cryptographic
terms are formally defined as:

FuncName ::= sk (secret key)
 | pk (public key)

 | pvk (private key)
 | h (hash)
 | . (no function)

Using the mentioned sets, terms are defined as follows.

()
{ } ()

::= . | | | | ,

 |
FuncNameT

T T T

T

R N K

To denote the set of all sub-sets of terms we use the ∗
T

symbol.
By simply creating bindings from terms we lose the

position of each component. However, the position cannot
be neglected because a simple modification may lead to a
serious attack (e.g. type flaw attacks [4]-[5]-[6]). This is
why a binding also has to contain the structure of the term.
For this purpose we use a canonical representation based
on typed terms, as already introduced by the authors in
[17].

Typed terms denote the type of each message component
and they are defined as follows:

= r ()

 | n ()

 | k ()

 | b ()

role type

nonce type

key type

binding type

t
T ::

To denote the set of all subsets of typed terms that can

be constructed, we use the ∗
t
T notation. In this case also,

we use the ‘.’ symbol to denote an empty set.
Now, having defined all the components needed, we can

provide the definition of bindings.

Definition 1. A binding is a tuple written as

, , , , , ,f kρ ν κ β θ , whereρ ∗∈R , ν ∗∈N , κ ∗∈K , β ∗∈B ,

f FuncName∈ , k ∈K and θ ∗∈
t
T . We use the B symbol

to denote the set of all bindings and the symbol ∗B to
denote the set of all subsets of bindings. The ‘.’ symbol is
used to denote an empty binding set.

1. To obtain the components of a binding b, we use
the following projection functions:

() () ()
() () ()

()

 , , ,

, , ,

Roles b Nonces b Keys b

Bindings b Func b f BindingKey b k

TypeSet b

ρ ν κ
β

θ

= = =

= = =

=

2. The binding composition operator
_ _ :+ × →B B B composes all subsequent

components using set operators;
3. The sub-binding operator ⊏ is defined inductively

as follows:
b ⊏ b
b1 ⊏ b2 if () ()

() ()
() ()

() ()
() ()

() ()

1 2

1 2

1 2

1 2

1 2

1 2

Roles b Roles b

Nonces b Nonces b

Keys b Keys b

Bindings b Bindings b

Func b Func b

BindingKey b BindingKey b

⊆ ∧

⊆ ∧

⊆ ∧

⊆ ∧

= ∧

=

An example specification of a binding is the following

specification of a message from Lowe’s modified “BAN
concrete Andrew Secure RPC” [14] protocol:

{ }Na,K ab,B Kab′

6th RoEduNet International Conference 2007

 66

||

{ }, , ,., , , , ,B Na Kab sk Kab n k r

III. FORMALIZING THE PROTOCOL SPECIFICATION

In this section we provide a formal specification of
security protocols combining the mentioned bindings with
the strand space model proposed by Guttman et all in [15].

A. B-Strand spaces and B-Protocols

A strand is a sequence of send and receive events. A
strand space is a collection of strands. Thus, protocol
participants are modeled as strands and a protocol is
represented as a strand space.

In the remaining of this section we provide a slightly
modified (i.e. adapted) definition of the strand space
model, that we call b-strand space. In the proposed model,
the roles exchange bindings constructed from the original
terms.

Strands are usually used to represent roles. However,
they can also be used to represent internal operations
specific to roles, such as encryption, decryption or memory
storage. Unlike in the original model, we need to
determine the type of every b-strand included in the
specification. Because of this, before defining b-strands,
we need to define the set of classifiers consisting of
predefined symbols that can later be extended if needed:

()
()

::

|

Role classifier

Knowledge classifier

=
R

K

C C

C

To denote the sending and receiving of terms, the

original strand space model introduces signed terms. The
appearance of a positive term denotes transmission and the
appearance of a negative term denotes reception. Similarly,
in the proposed model, a positive binding denotes sending
and a negative binding denotes reception. A signed binding
is also known as a node.

Next, we provide the definition for signed bindings and
then proceed with the definition of b-strands and b-strand
spaces.

Definition 1. A signed binding is a pair ,bσ with

b∈B and σ one of the symbols +, -. A signed binding is

written as –b or +b. ()*±B is the set of finite sequences of

signed bindings. A typical element of ()*±B is denoted by

1 2, , , nb b b± ± ±… , with ib ∈B .

Definition 2. A b-strand ():s
∗± ×B C is a sequence of

binding transmissions and receptions attached to a strand
classifier. A set of b-strands is called a b-strand space and
is represented as Σ. We use the *Σ symbol to denote a set
of b-strand space subsets.

1. A node is any transmission or reception of a
binding, written as ,in s i= , with s∈Σ and i an

integer satisfying the condition 1 ()i length s≤ ≤ ,

where ()length s is a function returning the

number of nodes from a b-strand. The set of all
nodes is denoted by N.

2. Let
1 ,n s i= and

2 , 1n s i= + be two

consecutive nodes from N on the same b-strand s.

Then, there exists an edge 1 2n n⇒ in the same

b-strand s.
3. Let

1 2,n n ∈N . If n1 is positive and n2 is

negative, and 1 2() ()bstrand n bstrand n≠ , then

there exists an edge
1 2n n→ .

4. Let n∈N . Then ()sign n is a function returning

the sign and ()binding n is a function returning

the binding corresponding to a given node.
5. Let s∈ Σ with ,Ss cβ= . Then we define the

following projection functions:

()1 Ss β= ()2
s c=

Definition 3. A role specification is a pair ,r ξ , such

that r ∈R and ξ ∗∈Σ . Let rS be a role specification. Then

Role(rS) is a projection function returning the role name
and BStrands(rS) is a projection function returning the set
of b-strands corresponding to a role specification.

A set of role specifications is denoted by RoleSpec and
RoleSpec* denotes the set of all subsets of role
specifications.

Simply specifying the sequence of messages for a

protocol is not enough. A specification must also include
initial role knowledge defined as follows.

Definition 4. Role knowledge is a pair ,r b , where

r ∈R and b∈B , such that Func(b)=BindingKey(b)= . .
We use RoleKnow to denote a set of role knowledge and
RoleKnow* to denote the set of all subsets of role
knowledge.

Thus, a protocol based on bindings (also called a

binding protocol, or simply b-protocol) is defined as a set
of role knowledge attached to a set of role specifications:
ProtSpec = RoleKnow RoleSpec∗ ∗× .

To exemplify the specification of a protocol in the b-
strand space model, we use Lowe’s modified “BAN
Concrete Secure RPC” protocol [14]. The regular protocol
specification and the resulting b-strand model are
presented in Fig. 1.

In the given example, there are two b-strands (Fig. 1(b)):
one corresponding to role A (i.e. sA) and one
corresponding to role B (i.e. sB). For the given b-strands:

()A 2
s =

R
C , ()A 3

s A= , ()B 2
s =

R
C , ()B 3

s B=

6th RoEduNet International Conference 2007

 67

{ }
{ }

b

Ka

Ka

a

NAB

NBA

BKNAB

NABA

AB

:

:

,,:

,:

→
→
→
→

(a)

(b)

Figure 1. Lowe’s protocol
(a) Regular specification (b) B-Strand space

specification

B. Constructing knowledge b-strands

Although the specification model from the previous
section includes initial role knowledge, this knowledge can
change from one received binding to another. Because of
this we also need to model the knowledge available for
each node to construct the next binding.

Knowledge is modeled as a b-strand included in a role
specification. Thus, a role specification consists of zero or
more knowledge b-strands (i.e. b-strands having the
classifier equal to

K
C) and one or more role b-strands (i.e.

b-strands having the classifier equal to
R
C). For example,

in Fig. 1(b) the specification includes zero knowledge b-
strands and one role b-strand for each role.

The purpose of knowledge b-strands is to explicitly
represent the relationship between positive nodes (i.e.
sending nodes) and the knowledge extracted from received
terms. We create knowledge b-strands from an existing b-
protocol specification.

Knowledge is viewed as being private to each role and
inaccessible by other roles. To model the concept of
private knowledge, we consider that bindings exchanged
between role b-strands and knowledge b-strands inside a
role specification have a unique binding function “kenc”
and a unique key corresponding to every role-knowledge
b-strand pair. This key is included in the initial knowledge
for each role.

The function name definition is thus extended with
“kenc”:

FuncName ::= FuncName
 | kenc (knowledge encryption)

The construction algorithm receives as input an existing

specification and generates the corresponding knowledge
b-strands and role b-strands. Given an existing protocol
specification, the knowledge b-strand construction

algorithm is the following:

Knowledge b-strand construction algorithm:
LET P={ RK, RS} be a protocol specification
LET RSConstr be an empty set of role specifications
FOR EACH

Sr RS∈

 (),Constr Ss getInitialB r RK= +

 (),KConstr Ss getInitialB r RK= −

FOR EACH ()()
1

,Sn getBStrand r∈
R
C

 IF ()sign n = +

 (), ,Constr Constr KConstrs s getKnowB s n= −

 (),KConstr KConstr KConstrs s getKnowB s= +

 ELSE

(), ,Constr Constrs s n binding n= +

(),KConstr KConstrs s binding n= −

 ENDIF
 ENDFOR

 , ,Constr Constr Constr KConstrRS RS s s=

ENDFOR

In the construction process, a received binding generates
an additional node transmitting a binding to the knowledge
b-strand. A transmitted binding, however, generates a
receiving node from the knowledge b-strand, denoting the
causality between role knowledge and binding
transmission.

The getInitialB function returns the initial knowledge
binding for the given role specification. This is then used
to initialize the role and knowledge b-strands, thus
modeling in a natural way initial role knowledge.

The getKnowB function is used to return the
accumulated knowledge binding from the knowledge b-
strand. Because knowledge is accumulative, for every
binding received by knowledge b-strands, a new
knowledge binding is constructed and emitted. Also, for
every received binding, the existing knowledge is checked
for knowledge that can be extracted from internal bindings
(e.g. the case of bindings corresponding to terms that can
only be decrypted later, when the decryption key is
received).

We used the getBStrand function to return a set of b-
strands from a role specification, given a b-strand
classifier.

IV. COMPOSITION ALGORITHM

In this section we provide a composition algorithm for
generating new security protocols.

The composition algorithm starts with the creation of
knowledge b-strands for each role specification, given the
b-strand specification of the involved protocols. This is
done using the proposed algorithm from the previous
section.

6th RoEduNet International Conference 2007

 68

Next, based on the created b-strands, a sequential search
is started to find an “appropriate” place for each binding
from one specification in the other protocol specification.
Here, “appropriate” means the satisfaction of several
requirements, such as existent knowledge (returned by the
accumKnow function) and the existence of the same
sequence of predecessor nodes (returned by the
predNodeSeq).

However, not all nodes can be placed in the other
protocol, because there may be cases when the
requirements are not satisfied. In this case, the third step of
the algorithm simply concatenates the remaining nodes
unchanged to the end of the destination specification.

A more detailed description of the algorithm is the
following:

Composition algorithm:
LET

1Sr ,
2Sr be two role specifications from different b-

protocols such that () ()2 1S SRole r Role r=

LET ()ProcNodes
∗∈ ±B be a set containing the

processed nodes, initially empty
1. Create knowledge b-strands

2. FOR EACH ()()2 2 1
,Sn getBStrand r∈

R
C ,

 ()()1 1 1
,Sn getBStrand r∈

R
C ,

 ()2sign n = + , ()1sign n = +

 ()1 1b binding n=

()2 2b binding n=

 IF
2n ProcNodes∉ AND

()2 ' 'Func b kenc<> AND

()()1 ' 'Func binding n kenc<> AND

 () ()2 1destRole n destRole n= AND

 ()2accumKnow n ⊏ ()1accumKnow n AND

 () ()2 1predNodeSeq n predNodeSeq n⊆

1 1 2b b b= +

()()
()()

()

1

1

2

accumKnow destNode n

accumKnow destNode n

accumKnow n

=

+

 { }2ProcNodes ProcNodes n= ∪

 ENDIF
 ENDFOR

3. FOR EACH ()()2 1
,Sn getBStrand r∈

R
C

 IF n ProcNodes∉ AND

()() ' 'Func binding n kenc<> AND

()sign n = +

()
()

1

1

,

 , ,

S

S

getBStrand r

getBStrand r n

=
R

R

C

C

 ENDIF
 ENDFOR

By running the algorithm, there may result multiple
possibilities for creating the new protocol. In fact, if we
want to step through all possible forms of the constructed
protocol, the presented algorithm should be included in a
backtracking algorithm. However, the backtracking
algorithm must have an evaluation function, which can
include a combination of several criterias, such as binding
size, number of sent/received bindings or total number of
bindings for which ()() '. 'Func binding n <> .

V. EXAMPLE COMPOSITION

In this section we provide an example composition of
two different security protocols. Because of space
considerations, we left out from the specifications the
representation of knowledge b-strands.

Figure 2. The “Woo and Lam Pi 3” authentication protocol

representation in the b-strand space model

Figure 3. Lowe’s modified version of the Yahalom
protocol represented in the b-strand space model

The first protocol is the “Woo and Lam Pi 3” security

protocol [16] (Fig. 2). This protocol was designed to
provide a one-way authentication. Namely, role A proves
his authenticity to role B through the trusted server S.

The second protocol is Lowe’s modified version of the
Yahalom protocol [18] (Fig. 3). This protocol, as
mentioned by the designers, provides a mutual
authentication between roles A and B and a session key
distribution. The authentication of role B to role A is done
using the third message from the specification sent from
the server S to role A. The authentication of role B to role
A is intended with messages four and five. However,

6th RoEduNet International Conference 2007

 69

because message four is not linked to the current run (i.e. it
does not contain the nonce Nb), the authentication
sequence can be attacked, as proven by Paulson in [19].

The scope of the composition is to provide a mutual
authentication and a key exchange protocol. By applying
the composition algorithm from the previous section we
can generate a new strengthened protocol, which provides
mutual authentication of the involved roles and key
exchange (also solving the problem reported by Paulson).
The resulting protocol can be seen in Fig. 4.

Figure 4. The composed protocol

VI. CONCLUSIONS

We have presented a method for security protocol
message composition. The novelty of our method is the
message-level approach, which allows the composition of
existing security protocols without having to formulate
additional security properties. The composition results in a
strengthened protocol that embodies the sum of the
security properties contained in the separate protocols.

We did not provide, however, a powerful composition
algorithm to evaluate and chose the most adequate
resulting security protocol. However, the model described
in this paper can be used in conjunction with other, more
complex algorithms, which the authors intend to include in
their future research agenda.

In this paper we also proposed a performance evaluation
criteria based on binding dimensions and enumeration.
This can be replaced, however, with a more powerful
practical model that also allows, for example, a
comparison between the complexity of the encryption
function and key.

Also, because the composition process can become
rather complex even when dealing with two protocols, we
intend to implement in the future an automated

composition tool.

REFERENCES

[1] M. Abadi, A. D. Gordon, “A Calculus for Cryptographic Protocols:
the spi-calculus”, In Fourth ACM Conference on Computer and
Communications Security, ACM Press, pp. 36-47, 1997.

[2] Andrew D. Gordon, Alan Jeffrey, “Authenticity by Typing for
Security Protocols”, Journal of Computer Security, 11(4), pp. 451-
520, 2003.

[3] Cremers C., Scyther documentation, 2004, available at
http://www.win.tue.nl/~cremers/scyther.

[4] Catherine Meadows, “A Procedure for Verifying Security Against
Type Confusion Attacks”, 16th IEEE Computer Security
Foundations Workshop (CSFW'03), p. 62, 2003.

[5] Genge Bela, Iosif Ignat, “An Abstract Model for Security Protocol
Analysis”, WSEAS TRANSACTIONS on COMPUTERS, Issue 2,
Volume 6, pp. 207-215, 2007.

[6] Genge Bela, Iosif Ignat, “A typed specification for security
protocols”, Proceedings of the 5th WSEAS Int. Conf. on Data
Networks, Communications and Computers, Bucharest, Romania,
October 16-17, pp. 113-118, 2006.

[7] Cas J. F. Cremers, “Compositionality of Security Protocols: A
Research Agenda”, Electr. Notes Theor. Comput. Sci., 142, pp. 99-
110, 2006.

[8] S. Andova, Cas J.F. Cremers, K. Gjosteen, S. Mauw, S. Mjolsnes,
and S. Radomirovic, “A framework for compositional verification
of security protocols”, to appear, 2007.

[9] Levente Buttyan, “Building blocks for secure services:
Authenticated key transport and Rational exchange protocols”,
Thesis, 2001.

[10] Joshua D. Guttman, “Security protocol design via authentication
tests”, In Proceedings of the 15th IEEE Computer Security
Foundations Workshop, IEEE CS Press, June, 2002.

[11] Hyun-Jin Choi, “Security protocol design by composition”,
Cambridge University, UK, Technical report Nr. 657, UCAM-CL-

TR-657, ISSN 1476-2986, 2006.
[12] Ran Canetti, Tal Rabin, “Universal Composition with Joint State”,

In Proceedings of CRYPTO 2003, Lecture Notes in Computer
Science, vol. 2729. Springer Verlag, New York, pp. 265—281,
2003.

[13] A. Datta, A. Derek, J. C. Mitchell, A. Roy, “Protocol Composition
Logic (PCL)”, Electronic Notes in Theoretical Computer Science

(Gordon D. Plotkin Festschrift), to appear, 2007.
[14] Gavin Lowe, Some new attacks upon security protocols, In

Proceedings of the 9th Computer Security Foundations Workshop,
IEEE Computer Society Press, pp. 162-169, 1996.

[15] F. Javier Thayer Fabrega, Jonathan C. Herzog, Joshua D. Guttman,
“Strand spaces: Proving security protocols correct”, Journal of
Computer Security 7, 191-230, 1999.

[16] T.Y.C. Woo and S. S. Lam, “A lesson on authentication protocol
design”, Operating Systems Review, 1994.

[17] Genge Bela, Iosif Ignat, “Verifying the Independence of Security
Protocols”, IEEE 3rd International Conference on Intelligent
Computer Communication and Processing, Cluj-Napoca, Romania,
pp.155-163, 2007.

[18] Gavin Lowe, “Towards a completeness result for model checking of
security protocols”, Technical Report 1998/6, Dept. of
Mathematics and Computer Science, University of Leicester, 1998.

[19] Lawrence J. Paulson, “Relations between secrets: Two formal
analyses of the Yahalom protocol”, Journal of Computer Science,
2001.

6th RoEduNet International Conference 2007

