

Abstract — Authentication in Virtual Organizations is an

acute problem, when the system does not want to use a

centralized, open to failures authentication model. In this

paper we outline the specifications of a Coordinated Mobile

Virtual Organization, where the coordinators are

responsible only for the “introduction” of the new mobile

nodes, which can move freely (but continuously) from one

member to another. The system allows the use of a random

number of coordinators, each of them having a random

number of directly connected neighbors. We also propose a

distributed authentication protocol based on the “Wide-

Mouth Frog” and “Neumann-Stubblebine” protocols.

Keywords — Distributed Authentication, Protocol

Formalization, Virtual Organizations.

I. INTRODUCTION

In today’s Internet the possibilities of being the subject

of an attack are growing each day. This is why companies
restrict access to they’re stations by creating Virtual
Private Networks (VPN) or by using proxies and secured
gateways.

The problem with VPN is that once a user was
authenticated, he can then have access to the entire
network. The other problem is that VPN’s are created
statically, the entire communication being routed through
a single point of access.

This paper deals with a Mobile Virtual Organization
type, where a node may move around, and may access
any other node in the system, previously being
authenticated by a third, trusted party. There have been a
number of proposals for the administration and
authentication in Virtual Organizations ([1], [2], [3], [4])
but the systems described consider a global access and
authentication point, meaning that every node will have
to consult a central authority when accepting a
connection from a specific host and each client will need
to have a password with each node he will access.

These assumptions are perfectly reasonable if we
consider systems that are static or protected by physical
devices (routers, proxys) [4]. But today, the mobile world
is emerging and VO’s may accept each day new members
who can offer new services.

Therefore, we propose an organization type having
multiple points of access, where each node, modeled as
an Agent, can become a possible authenticator. The
protocol used for authenticating users is formalized and
transformed into CSP specification [15] using the Casper
compiler developed by Gavin Lowe [5].

The system model proposed in this paper is only a
starting point for future development and simulations that
concern distributed authentication protocols in mobile
environments.

The paper is structured as follows. In Section 2 we
introduce our system, describing Virtual Organizations in
general, and then specifying the properties of the CMVO
(Coordinated Mobile Virtual Organization). In section 3
we describe the protocol for the authentication of the
parties. We end with a conclusion and a specification of
future work.

II. COORDINATED MOBILE VIRTUAL

ORGANIZATIONS

A Virtual Organization (VO) is a set of entities

(nodes), that we call Agents, each of them having a set of
resources that may be used by a specific client, or other
Agent. We consider nodes as being Agents because they
can be modeled as acting on they’re own environment
independently. Also, Agents are not restricted to one
point, they can move from one node to another to satisfy
they’re goals. Examples of autonomous agent systems
may be found at [1], [6], [7], [8].

The purpose of this paper is not to answer the question
“why is a VO created?” or “how does it share
resources?”. These questions are covered in detail in [1].
Instead, the questions that may find answers here, look
like “is he safe to join the VO?” , “am I talking to the
right person?” or “are you qualified to become an
authenticator?”.

Towards a distributed authentication system
in Coordinated Mobile Virtual

Organizations

Genge Bela1, Haller Piroska2,

1 Genge Bela is with the Faculty of Engineering, “Petru Maior”
University of Targu Mures, Romania; bgenge@upm.ro
2 dr. Haller Piroska is with the Faculty of Engineering, “Petru
Maior” University of Targu Mures, Romania; phaller@upm.ro

1. System architecture

The system is composed of three kinds of Agents:
Coordinator (C), Authenticator (A) and Requester (R), as
shown in figure 1. These are connected through network
lines that may be not permanent, or may be wireless
connections, and more important: they are not safe:
messages may be loosed, spoofed, replicated or created
using old discovered passwords.

When a client (Requester Agent-R) wants to join the
VO, to have access to the resources provided by an

Figure 1. Agent R’s entry in the VO, using COORD1 as

access point

Authenticator, he presents himself to one of the
Coordinators to which is registered. R cannot access the
nodes from the system, without registration. The
Coordinators must not be connected with all nodes in the
VO. They have role only at the beginning of the
authentication process, and can migrate to the adjacent
nodes after that.

2. Registration

The process of registration can take any form, through
a web page, e-mail, the important thing is that at the end
of it, the user will have a certificate containing personal
data (supported algorithms, password and random
number generation capabilities, encryption, decryption
speeds) signed by a Certification Authority (CA). In the
proposed system we will make the simplifying
assumption that there is only one kind of authority for
each access point (Coordinator) that can do this.

In this version we assume that there is a stored
password in a secure database that is used by the
coordinator, but in the future we will include some sort of
key exchange, to allow the entry of “unknown” users in
the VO.

3. The Agents

The Coordinator Agent’s role is mainly for primary
authentication. We say mainly, because it will also have
other purposes in the future, like the centralization of
node behavior and key lifetime assertion. The system
allows the access of two kinds of Agents:

• Authenticator
• Requester

If a new node wants to become an Authenticator

(0,, ≥= AAi NNiA), he must first authenticate

himself at one of the Coordinators (Cj NjC ≤≤1,),

using his secret password
jiCAK and presenting the

certificate given by the CA. After the verification of the

password and the certificate, jC will engage in a

provocation conversation with iA , testing the

“knowledge” of the new Agent, so iA can prove that it is

capable of authenticating other users.
The conversation between the two parts consists of a

sequence of question/response (X/Y) type messages as
those described in the process of argumentation in Letia
[8], the difference being that this conversation is based on
challenging the opponent, existing only one proponent,
the Coordinator:

• 0, ≥′ iQi

• 1, +=′ ijR j

• XQi ∈′

• YR j ∈′

The proposed verifications include:

� Random number generation (rand)
� Supported algorithms (alg)
� Proposed message encryption speed (enc)
� Password generation (pwd)

Having these analyzed, a normalized quality function

of the agent is constructed:

Qag(rand,alg,enc,pwd) = (f(rand)+ (1)
f(alg)+ f(enc) + f(pwd))/4

where []1,0: →Rf . The result is compared with the

one in the database. The accepted tolerance function
allowed, that is, the allowable difference between the
value stored in the database at registration and the
computed value is the following:

αη ≤−= QDQag (2)

where QD is the stored (registered) value of the quality

of the Agent, and α is the allowed tolerance level.
After the authentication process has been completed,

the iA agent is allowed to connect to the next

Authenticator node, requesting COORD to initiate the
authentication algorithm described in the next section.

The Authenticator Agent is responsible for the future
introduction of “new” nodes, which want to migrate to
other Authenticators. Every new node sends initially to
an Authenticator his requirements. These include a set of

values { }
iii KIL ,, , where iL is the lifetime of the new

session key, iI is the requirement of the new agent, to

authenticate other agents, and iK is the capability of the

agent (password generation, algorithms, …).
The last agent is the Requestor agent, which may

correspond to any entity that wants to request an
authentication from the organization. If a newly
authenticated entity has the possibility to authenticate
other nodes, he will be an Authenticator. Else, he will
remain in the state of Requestor.

This chain of authentication allows the system to be
scalable and not to depend on the functionality of the
coordinators.

III. AUTHENTICATION PROTOCOL

In the described system, there was a need for an

authentication protocol that satisfied the following:
a) Support protocol runs in insecure

environments
b) Support message loss
c) Support creation of session key by a capable

third party
d) Minimize the contribution of random keys

from the new entity
e) Use only symmetric algorithms
f) Minimize DoS and Replay attack possibility

To satisfy these needs, a number of existing protocols
have been studied: “Wide-Mouth Frog” [9], Yahalom [9],
Needham-Schroeder [10], Otway-Rees [11], Neumann-
Stubblebine [12] and Kerberos version 5, as evaluated in
[13] and all of them shortly presented in [14]. From these,
only Kerberos satisfies almost all needs, the rest having
the big problem that they are all open to DoS attacks
because any user can initiate the authentication
mechanism.

Kerberos could not be used in our system, because of
the following. Firstly, it is too complex, relying on two
authentication servers and timer synchronization, or in
our distributed system, the only servers that need to
communicate are adjacent and they may not have they’re
clocks synchronized. Secondly, because the key
generation in Kerberos happens on every query for a
TGT message, and if we consider a system where
messages may be loosed, a new key will be generated
even if the client did not get the last one. Also, a third
party authentication protocol is more preferred because
the “Man in the middle” attack may be harder to create if
messages do not travel on the same line.

A. The Casper formalization language

This section briefly introduces the Casper security
protocol specification language. For more information,
the reader should consult [5].

The Casper project, developed by Gavin Lowe is
composed of a specification language and a compiler.
The Casper protocol specification language is simple and
clear, making it possible to describe a protocol in a few
minutes. The goal of the project was to offer a simple
language, similar to the “usual” way of specifying
protocols that would allow (using the compiler)
transforming a protocol specification into a more
complex, CSP description.

Next, we will briefly describe the syntax of the Casper
language.

A Casper specification of a protocol is structured in
sections. Because of space considerations we can not
offer a full-description of each section, therefore we will
focus our attention upon the following sections:

#Free variables

#Protocol description

#Actual variables

#System

#Intruder Information
In the ‘#Free variables’ section, the user may specify

the types of participants to the protocol (Agents, Servers),
Key types (SessionKeys of ServerKeys), timestamp
variables and so on. The naming of the variables chosen
in this section is used in the ‘#Protocol description’.

The ‘#Actual variables’ section contains the actual
participants that take part to the run of the protocol.
Using these variables, the System is specified in the
‘#System’ section, stating the roles that each variable will
take.

Finally, an intruder information is provided in the
‘#Intruder Information’ section so that the protocol may
be verified against the knowledge of the intruder.

The steps of a protocol are numbered according to the
specification, larger messages may be broken into sub-
steps by using letters:

2.a 2.b
Sending an encrypted message is possible using the

following statement:
A -> B : { X, Y, Z }{ kab }

which means that A sends to B an encrypted message
with the key ‘kab’ that is composed of 3 parts: X, Y and
Z.

If a party does not need to understand a certain
message, it must be specified with the special operator
‘%’ meaning that the message is stored in a variable and
sent to the destination principal later:

Store message into ‘Va’:
A -> B : { kab, Rs1, Ts }{ k } % Va

Send it to other principal:
B -> C : Va % { kab, Rs1, Ts }{ k }

B. The proposed protocol

Figure 2. The algorithm steps for authenticating the

new agent B
The ‘#Free variables’ section:

A, B : Agent

S : Server

SKey : Agent -> ServerKey

kab : SessionKey

Ts, Tb : TimeStamp

L, Rb, Rs, Rs1 : Nonce

InverseKeys : (SKey, SKey)

The ‘#Protocol description’ section:

0. -> B : A
1. B -> S : {A, Tb, Rb }{ SKey(B) }
2a. S -> A : { B, Rs, kab, L, Ts }{ SKey(A) }
2b. S -> A : { kab, Rs1, Ts }{ SKey(B) } % Va
3a. S -> B : { A, Rs1, kab, L, Ts }{ SKey(B) }
3b. S -> B : { Rb - 1 }{ kab }
3c. S -> B : { kab, Rs, Ts }{ SKey(A) } % Vb
4. B -> A : { B, Vb % { kab, Rs, Ts }{ SKey(A) } }{
kab }
5. A -> B : { A, Va % { kab, Rs1, Ts }{ SKey(B) } }{
kab }

The ‘#Actual variables’ section:
Alice, Bob, Mallory : Agent
Sam : Server
Kab : SessionKey
TS, TB : TimeStamp
Life, RB, RS, RS1 : Nonce

The ‘#System’ section:

INITIATOR(Bob, Sam, TB, RB)
RESPONDER(Alice)
SERVER(Sam, TS, Life, RS, RS1, Kab)

The ‘#Intruder Information’ section:

Intruder = Mallory
IntruderKnowledge = {Alice, Bob, Mallory, Sam,

SKey(Mallory)}

C. Protocol analysis

The protocol is straightforward, being initiated by
agent Bob (the Requestor), who wants to authenticate
himself to Alice (node A). S plays the third-party server.

The protocol assumes the following:
i. A and S share a secret key SKey(A)

ii. B and S share a secret key SKey(B)
Although these keys are in fact session keys

(established at the beginning, when the user authenticates
himself to one of the Coordinators) we consider them
server keys because of the roles they play.

To protect against replay attacks, the protocol makes
use of timestamps. The clocks of communicating
neighbors do not have to be synchronized because the
timestamp is used only as a Nonce [16], [17], [18], [19]
(“Number once used”). This way, the receiving entities
will not have to store a list of random nonces and verify
them against incoming messages, but check only the
timestamp of the latest package.

The protocol is started by B who wants to authenticate
himself to A (step 0).

0. -> B : A
In step 1,B informes S that it wants to be authenticated

to A:
1. B -> S : {A, Tb, Rb }{ SKey(B) }

B sends to S this message, composed of the name of A,
a Timestamp Tb and a random number Rb, all encrypted
with the key he shares with the server. The timestamp is
sent to ensure S that this is a fresh message. The Rb is
used to hide the contents of the message so that the
protocol is well protected against offline-dictionary
attacks.

Receiving this message, the server checks the
timestamp and generates two messages, one of which is
sent to A and the other one is sent to B. This way, A may
present to B a proof that he is “known” by S and B may
present to A a proof that he is also “known” by S. The
word “known” is used to state that S has authenticated the
parties.

The message sent back to A is decomposed in two
parts for clarity. The first part:

2a. S -> A : { B, Rs, kab, L, Ts }{ SKey(A) }
informs A about the session key ‘kab’ that the server

has generated. It also specifies a random number Rs that
will be used by A to authenticate B. The package
includes also a Lifetime for the key.

The second part:
2b. S -> A : { kab, Rs1, Ts }{ SKey(B) } % Va

is a message that A does not understand, beeing
encrypted with B’s server key. It is used only to prove
that A knows the key and he got it from S. Also, in this
package, the server ties the session key to the Rs1
random number so that the package may be authenticated
with the random number sent back to B in step 3a.

The messages sent from B by S is composed of 3 parts.
The first part:

3a. S -> B : { A, Rs1, kab, L, Ts }{ SKey(B) }

is a message similar to 2a, only addressed to B.
The second part:

3b. S -> B : { Rb - 1 }{ kab }
is used to ensure B that the server has produced the key

and it is a response to the challenge sent by B in step 1.
The third part:

3c. S -> B : { kab, Rs, Ts }{ SKey(A) } % Vb
is similar to the message 2b.
After receiving these messages, the two parties now

exchange the messages that will confirm them that the
other side has received exactly the same password in the
same run of the protocol. This is done in steps 4 and 5.

The great thing about this protocol is that it minimizes
the use of B’s capabilities in generating passwords and
random numbers. The authentication process is grouped
in sessions, the B agent having the capability of
generating new authentication sessions if it wants to re-
generate a password, or re-authenticate himself. If a
message is loosed, B will not have to create a new
authentication session, but he will only send a message
for the same session, the keys being re-sent and not re-
generated this way. The initial random number Rb is only
used so that on response the client knows for which
session was the authentication process started.

In the future, we will offer a formalization of the
protocol using Typed-MSR where we will model and
analyze the users and the possible intruders as specified
in [16], [17], [18], and using the Typed SPI-Calculus [19]
that will allow us the verification of the protocol.

IV. CONCLUSION

The described system allows the distributed

authentication of users that are previously registered at a
coordinator. The system does not differ very much from
other authenticated virtual organizations when we are
looking at the way entities join the system. The main
difference is that users are not required to have a
password with any of the entities in the VO and still be
able to authenticate themselves properly using a third-
party authentication protocol, as the one described in
section III.

This system is recommended for use in mobile
networks where agents (nodes) move around
continuously, collecting information and then leaving the
organization.

The protocol described in section III allows not only a
third-party authentication, but was designed for the
tolerance of message loss, and for use in environments
that are not message-secure.

In this paper, we have presented a system that offers a
decentralized authentication protocol where each node
may become an authenticator. As future work we plan to
construct a simulation model for the system that will
allow us to detect and correct the possible faults. Also,
we will have to investigate on the possibilities of

evaluating the security “fingerprint” (password and
random number generation capabilities) of a specified
user so that the password will only become a back-up
security element and not the primary means of
authentication.

In these kinds of systems, nodes may misbehave, may
malfunction as the result of hardware/software error,
generating random data in a Byzantine manner. This is
why, we propose also as a future work, the introduction
of behavior lists for each Authenticator Agent so they
may be excluded from the system in proper time.

REFERENCES

[1] Timothy J. Norman, Alun Preece, Stuart Chalmers, Nicholas R.
Jennings, Michael Luck, Viet D. Dang, Thuc D. Nguyen, Vikas Deora,
Jianhua Shao, W. Alex Gray, Nick J. Fiddian: “Agent-based formation
of virtual organizations”. KBS, 2004
[2] Roberto Alfieri, Roberto Cecchini, Vincenzo Ciaschini, Luca
dell'Agnello, Ákos Frohner, Alberto Gianoli, Károly Lörentey, Fabio
Spataro: “VOMS, an Authorization System for Virtual Organizations”.
European Across Grids Conference 2003: 33-40
[3] Michael Kaminsky, George Savvides, David Mazière, M. Frans
Kaashoek: “Decentralized user authentication in a global file system”.
SOSP 2003: 60-73
[4] Mark L. Green, Steven M. Gallo, Russ Miller:
”Grid-Enabled Virtual Organization Based Dynamic Firewall”. GRID
2004, Pittsburg, PA, USA: 208-216
[5] Gavin Lowe: “Casper: A compiler for the Analysis of Security
Protocols”. In Proc. CSFW ’97, Rockport. IEEE, 1997
[6] Ana L. C. Bazzan: “A distributed approach for coordination of
traffic signal agents”. AAMAS, 2005: 131-164
[7] N. Haque, N. R. Jennings, L. Moreau: “Resource allocation in
communication networks using market-based agents”. KBS, 2005
[8] Ioan Alfred Letia: “Gradually intrusive argumentative agents for
diagnosis”. Muti-Agent Systems for Medicine, Computational Biology
and Bioinformatics, 2005
[9] M. Burrows, M. Abadi, R. Needham: “A Logic of Authentication”.
ACM Transactions on Computer Systems, Feb 1990, pp. 18-36
[10] R.M. Needham and M.D. Schroeder: “Using Encryption for
Authentication in Large Networks of Computers”. Communication for
the ACM, Dec 1978, pp 993-999
[11] D. Otway and O. Rees: “Efficient and Timely Mutual
Authentication”. Operating Systems Review, 1987, pp. 8-10
[12] A. Kehne, J. Schonwalder, H. Langendorfer: “A Nonce-Based
Protocol for Multiple Authentications”. Operating Systems Review, Oct
1992, pp. 84-89
[13] B.C. Neuman and T. Ts’o: “Kerberos: An Authentication Service
for Computer Networks”. IEEE Communications Magazine, Sep 1994,
pp 33-38
[14] Bruce Schneier: “Applied Cryptography”. John Wiley & Sons,
1996
[15] C. A. R. Hoare: “Communicating Sequential Processes”. Prentice
Hall. April 1985.
[16] Balopoulos T. Gritzalis S. Katsikas S., "An Extension of Typed
MSR for specifying Esoteric Protocols and their Dolev-Yao Intruder",
in Proceedings of the CMS'2004 IFIP TC6/TC11 International
Conference on Communications and Multimedia Security. D. Chadwick
(Ed.), September 2004, Salford, UK, Kluwer Academic Publishers
[17] C.J.F. Cremers, S. Mauw & E.P. de Vink: “Formal Methods for
Security Protocols: Three Examples of the Black-Box Approach”.
NVTI Newsletter 7, 2003.
[18] Iliano Cervesato: “Typed Multiset Rewriting Specifications of
Security Protocols”. Electr. Notes Theor. Comput. Sci. 40, 2000
[19] A. D. Gordon, A. S. A. Jeffrey: “Authenticity by Typing for
Security Protocols”, In J. Computer Security. 11 (4). 2003. pp. 451-521

