

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 1 (2009) xx-yy

1

Extending WS-Security to Implement Security Protocols
for Web Services

Bela GENGE, Piroska HALLER

Department of Electrical Engineering, Faculty of Engineering, “Petru Maior” University of
Târgu Mureş, Mureş, e-mail: {bgenge, phaller}@engineering.upm.ro

Manuscript received March 15, 2009; revised April 15, 2009

Abstract: Web services use tokens provided by the WS-Security standard to
implement security protocols. We propose several extensions to the WS-Security
standard, including name types, key and random number extensions. The extensions are
used to implement existing protocols such as ISO9798, Kerberos or BAN-Lowe. The
advantages of using these implementations rather than the existing, binary ones, are
inherited from the advantages of using Web service technologies, such as extensibility
and end-to-end security across multiple environments that do not support a connection-
based communication.

Keywords: Security protocols, Web services, WS-Security

1. Introduction

Security protocols are “communication protocols dedicated to achieving
security goals” (C.J.F. Cremers and S. Mauw, 2005) [1] such as confidentiality,
integrity or availability. Existing technologies such as the Security Assertions
Markup Language [2] or WS-Security [3] provide a unifying solution for the
authentication and authorization issues through the use of predefined protocols.
By implementing these protocols, Web services authenticate users and provide
authorized access to resources. However, in order to integrate new protocols,
such as key-exchange or confidentiality protocols, we need to extend the WS-
Security standard with new components.

In this paper we propose several extensions to the WS-Security standard
including name types, key and random number extensions. The extensions were

2 B. Genge and H. Piroska

used to implement existing protocols such as ISO9798 [4], that makes use of the
Diffie-Hellman [5] key exchange protocol with digital signatures, or the
Kerberos V5 [6] symmetric key-based security protocol. The advantages of
using these implementations rather than the existing, binary ones, are inherited
from the advantages of using Web service technologies. From these we mention
extensibility and end-to-end security across multiple environments that do not
support a connection-based communication. In addition, by adding new tokens
to the existing ones, message components can be further categorized and
specialized, providing an increased security of these protocols because of the
additional information that accompanies each component [9, 10].

The implementations were made according to the specifications of the SOAP
[7] standard, which embodies the WS-Security components in its header. The
execution timings revealed the possible use of these protocols in a wide variety
of systems, ranging from e-commerce to multimedia streaming.

The paper is structured in four parts. After the introduction, section 2
illustrates the proposed extensions through the form of XML schemas. In
section 3 we present our experimental results, clearly showing that the proposed
extensions can be used to implement applications that require authentication,
key exchange or confidentiality protocols. We end our paper with a conclusion
and future work in section 4.

2. WS-Security extensions

WS-Security provides a set of tokens for implementing security properties
such as authentication, integrity and non-repudiation [9, 11]. These properties
are used by Web services to construct security protocols providing inter-domain
authentication. These are predefined, static protocols that must be implemented
by all communicating parties. In order to implement other authentication
protocols or other types of security protocols, the tokens provided by WS-
Security must be extended with several new ones.

We consulted a large number of security protocols from the SPORE [12]
library and the library of protocols presented by John Clark [8]. Based on these,
we identified four basic sets containing terms used by protocol participants to
construct messages: P, \textsf{N}; N, denoting the set of nonces (i.e. “number
once used”); K, denoting the set of cryptographic keys and M denoting user-
defined components.

The set of participant names P is further specialized with the following
disjoint sets: DN ⊆P P , denoting the set of distinguished names; UD ⊆P P ,

denoting the set of user-domain names; IP ⊆P P , denoting the set of user-IP

 Instructions for Preparation of Papers 3

names; D ⊆P P , denoting the set of domain names; U ⊆P P , denoting the set of
remaining user name types.

The set of nonces is also further specialized with two subsets: R ⊆N N , the

set of random numbers and T ⊆N N , denoting the set of timestamps.
Based on the above-defined sets and subsets, in the remaining of this section

we provide the XML representation of the terms corresponding to the
implementation of each element. The WS-Security standard provides a single
XML element for defining user names, through the form of
wsse:UsernameToken. For example, in order to define a user name, the
following syntax is required:

<wsse:UsernameToken>Denumire utilizator</wsse:UsernameToken>

Distinguished names are usually found in user certificates and they provide
information related to the organization, country, domain and several other
categories characterizing a user. In order to define user names in this format, we
define the following XML schema:

<complexType name="DistinguishedNameToken">
 <sequence>
 <element name="Organization" type="string"/>
 <element name="OrganizationalUnit" type="string"/>
 <element name="CommonName" type="string"/>
 <element name="Country" type="string"/>
 </sequence>
</complexType>

User-domain names have the following structure: user@host.domain or
user.host.domain. The schema for such a user name must include the user name
and one or more host or domain names separated by dots. The resulting schema
is the following:

<complexType name="UserDomainNameToken">
 <sequence>
 <element name="UserName" type="string"></element>
 <element name="DomainName">
 <simpleType>
 <restriction base="string">
 <pattern value="(\w+\.\w+)+"></pattern>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>

4 B. Genge and H. Piroska

IP addresses and identifying machine names must include support for both
IPv4 and IPv6 address formats. The resulted XML schema makes use of regular
expressions to describe the rules for constructing such names:

<complexType name="UserIPNameToken">
 <choice>
 <element name="IPV4">
 <simpleType>
 <restriction base="string">
 <pattern value="\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}"/>

 </restriction>
 </simpleType>
 </element>
 <element name="IPv6">
 <simpleType>
 <restriction base="string">
 <pattern value="([0-9a-fA-F]{1,4}:){7}[0-9a-fA-F]{1,4}"/>
 </restriction>
 </simpleType>
 </element>
 </choice>
</complexType>

For names containing exclusive domain names, we use the following
schema:

<simpleType name="DomainNameToken">
 <restriction base="string">
 <pattern value="(\w+\.\w+)+"></pattern>
 </restriction>
 </simpleType>

Random numbers are transmitted as binary tokens, for which a security
token is already provided by the WS-Standard. Transmitting timestamps is also
possible by using existing tokens provided by WS-Security. However, in order
to send and receive encrypted binary keys we use an XML schema that defines
the key value and the encoding type used:

 <complexType name="KeyToken">
 <sequence>
 <element name="KeyValue" type="string"/>
 </sequence>
 <attribute name="type">
 <simpleType>
 <restriction base="string">
 <enumeration value="base64Binary"/>
 <enumeration value="hexBinary"/>

 Instructions for Preparation of Papers 5

 </restriction>
 </simpleType>
 </attribute>
 </complexType>

3. Experimental results

The proposed extensions were used to implement protocols with security
properties ranging from authentication to key exchange and message
confidentiality. The protocols were constructed from participants exchanging
terms. Terms were constructed from the elements belonging to the basic sets
provided in the previous section:

 () { } ():: . | | | | | , |
FuncName

=
T

T P N K M T T T , (1)

where FuncName defines the set of function names used to encrypt terms:

NumeFunc ::= sk (symmetricencryption) (2)
 | pk (asymmetric encryption)
 | h (hash encryption)
 | hmac (keyed hash encryption)

By using the above definitions, protocol messages can be constructed as in
the following examples:

- { } (), , ,
ab

a sk K
A B N K , where ,A B ∈P , aN ∈N , K ∈K ;

- { }{ } ()
, , ,

a
a ah pk PK

A N A N , where A∈P şi aN ∈N , aPK ∈K .

Figure 1:. Symmetric encryption versus no encryption.

6 B. Genge and H. Piroska

The implementation of these messages replaces each component with its
corresponding security token provided by the proposed extensions. The
performance of the implementations is strongly dependent on the type of
encryption function used in the process. For example, there is an obvious
difference between an implementation that uses symmetric encryption and one
that does not use encryption at all. This is the case illustrated in Fig. 1, where
the encrypted message is { } ()absk K

M , with M ∈M . The figure illustrates the

time required to construct, encrypt and send a message using the proposed
tokens and the already existing ones.

In our experiments, messages were encoded in the SOAP [7] header,
according to the WS-Security standard. Because of their size, as seen in Fig. 1,
the XML structures influence the performance of the implemented protocols.
This is also influenced by the type of encryption used, as shown in Fig. 2.

The illustrated values correspond to the execution time for constructed
messages using symmetric and asymmetric cryptography. The symmetric
encryption-based protocol is clearly much more performant than the asymmetric
encryption-based protocol. This is why, the first protocol is usually used for
data transfer, while the second one for encrypting small sized messages, usually
in key exchange and authentication protocols.

Figure 2:. Symmetric versus asymmetric encryption.

The experimental results given in Fig.1 and 2 show that the performance of the
implemented protocols is not only influenced by the size of the encrypted messages, but
also by the encryption algorithm type. We have implemented several other protocols,
for which the execution timings are given in table 1. We identified several participants
for each protocol. We measured the construction and the processing time of messages
for each participant; the measured values were added together, resulting the total time.

 Instructions for Preparation of Papers 7

We can see a clear difference between protocols that use symmetric algorithms (e.g.
Lowe-BAN, Kerberos, Andrew RPC) and protocols that use asymmetric algorithms
(e.g. ISO9798, CCITT X.509). For some protocols, the processing or construction
timings are 0 because the sub-protocols we identified do not require operations. Based
on these measurements, we can clearly state that using the proposed WS-Security
extensions, we can implement key exchange, authentication and user-defined data
exchange protocols. Implementing such protocols with existing WS-Security tokens is
possible only for authentication protocols, for which the WS-Trust standard (using WS-
Security) defines several predefined protocols.

Table 1 : Execution time of security protocols

Participant role
Message

construction
(ms)

Message
processing

(ms)

Total
participant

(ms)

Total
(ms)

Lowe-BAN Initiator 11.81 3.68 15.49
Lowe-BAN Respondent 2.86 1.62 4.48

19.97

ISO9798 Initiator 35.78 23.30 59.08
ISO9798 Respondent 6.87 12.24 19.11

78.19

Kerberos 1 Initiator 0.83 0.00 0.83
Kerberos 2 Initiator 0.55 1.58 2.13
Kerberos 3 Initiator 3.34 0.94 4.28
Kerberos 1 Respondent 0.00 0.41 0.41
Kerberos 2 Respondent 3.37 1.67 5.04
Kerberos 3 Respondent 11.41 3.59 15

27.69

CCITT X.509 Initiator 7.85 0.00 7.85
CCITT X.509 Respondent 0.00 74.42 74.42

82.27

Andrew RPC Initiator 12.56 5.04 17.6
Andrew RPC Respondent 14.04 4.9 18.94

36.54

4. Conclusions and future work

Existing tokens from the WS-Security standard provide the possibility for
implementing a reduced set of security protocols. In order to enable the
implementation of a wide range protocols, we proposed several token
extensions for user name types and cryptographic keys.

The protocol implementations maintain their security properties by
respecting the requirements given in the WS-Security standard. These
requirements indicate the use of the SOAP header for transporting security
tokens and the use of the SOAP body for other message components. The
implementations we have developed show that protocol performance is
influenced by the XML constructions and by cryptographic functions used in
the process. Based on our experimental results, we can clearly state that the proposed

8 B. Genge and H. Piroska

extensions offer security for protocols used in various applications, such as multimedia
or eCommerce.

In the future we intend to use the proposed extensions to implement several
security protocols for multimedia applications and to prove that our
implementations can be used to transfer audio and video messages without loss
of quality.

References

[1] C.J.F. Cremers, S. Mauw, “Checking secrecy by means of partial order reduction”, In S.
Leue and T. Systa, editors, Germany, 2003, revised selected papers LNCS, Vol. 3466, pp.
171-188, 2005.

[2] Organization for the Advancement of Structured Information Standards, “SAML V2.0
OASIS Standard Specification”, http://saml.xml.org/, 2007.

[3] Organization for the Advancement of Structured Information Standards, “OASIS Web
Services Security (WSS)”, http://saml.xml.org/, 2006.

[4] ISO/IEC 9798-2, “Information technology – Security techniques – Entity authentication –
Part 2: Mechanisms using symmetric encipherment algorithms”, International Organization
for Standardization, Geneva, Switzerland, 1994.

[5] W. Diffie and M. E. Hellman, “New directions in cryptography”, IEEE Transactions on
Information Theory, IT-22(6), pp. 644–654, 1976.

[6] C. Neuman, T. Yu, S. Hartman, K. Raeburn, “The Kerberos Network Authentication
Service (V5)”, http://www.ietf.org/rfc/rfc4120, 2005.

[7] World Wide Web Consortium, “Simple Object Access Protocol (SOAP) 1.2”,
http://www.w3.org/TR/soap/, April 2007.

[8] J. Clark, J. Jacob, “A Survey of Authentication Protocol Literature: Version 1.0”, York
University, 1997.

[9] Gavin Lowe, “Some new attacks upon security protocols”, In Proceedings of the 9th CSFW,
IEEE Computer Society Press, pp. 162-169, 1996.

[10] C.J.F. Cremers, “Compositionality of Security Protocols: A Research Agenda”, Electr.
Notes Theor. Comput. Sci., 142, pp. 99-110, 2006.

[11] C.J.F. Cremers, S. Mauw, E.P. de Vink, “Injective Synchronization: an extension of the
authentication hierarchy”, TCS 6186, Special issue on ARSPA'05, Editors: P. Degano and
L. Vigano, 2006.

[12] SPORE, Security Protocol Open Repository, http://www.lsv.ens-cachan.fr/spore.

