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Abstract

The massive proliferation of information and communications technologies
(hardware and software) into the heart of modern critical infrastructures has
given birth to a unique technological ecosystem. Despite the many advan-
tages brought about by modern information and communications technolo-
gies, the shift from isolated environments to “systems-of-systems” integrated
with massive information and communications infrastructures (e.g., the In-
ternet) exposes critical infrastructures to significant cyber threats. Therefore,
it is imperative to develop approaches for identifying and ranking assets in
complex, large-scale and heterogeneous critical infrastructures. To address
these challenges, this paper proposes a novel methodology for assessing the
impact of cyber attacks on critical infrastructures. The methodology is in-
spired by research in system dynamics and sensitivity analysis. The proposed
behavioral analysis methodology computes the covariances of the observed
variables before and after the execution of a specific intervention involving
the control variables. Metrics are proposed for quantifying the significance
of control variables and measuring the impact propagation of cyber attacks.

Experiments conducted on the IEEE 14-bus and IEEE 300-bus electric
grid models, and on the well-known Tennessee Eastman chemical process
demonstrate the efficiency, scalability and cross-sector applicability of the
proposed methodology in several attack scenarios. The advantages of the
methodology over graph-theoretic and electrical centrality metric approaches
are demonstrated using several test cases. Finally, a novel, stealthy cyber-
physical attack is demonstrated against a simulated power grid; this attack
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can be used to analyze the precision of modern anomaly detection systems.
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1. Introduction

Modern critical infrastructure assets such as power plants, water supply
systems and electric power grids are moving from isolated environments to
“systems-of-systems” integrated with massive information and communica-
tions technology infrastructures such as the Internet. In fact, the prolifer-
ation of information and communications hardware and software into the
heart of critical infrastructures has given birth to a unique technological
ecosystem. Modern critical infrastructures encompass a variety of objects
ranging from sensors and actuators, RFID systems, industrial equipment
and video surveillance cameras to generic personal computers and network-
ing devices [11]. These sophisticated critical infrastructures deliver advanced
services and features, enhance controllability, reliability and safety, and facil-
itate the implementation of novel infrastructure paradigms such as the smart
grid.

As a result of technological advancements, critical infrastructures are not
only subject to traditional information and communications technology at-
tacks, but also to a new breed of cyber-physical attacks. These complex
and sophisticated attacks involve the exploitation of the cyber and physical
characteristics of a critical infrastructure asset in order to cause significant
damage. An exemplar is Stuxnet, which is widely believed to be the first
piece of malware that was specifically designed to impact the operations of
an industrial installation [4, 15]. In fact, Stuxnet’s ability to rewrite con-
trol logic raises the specter of a new class of threats that exploit software
vulnerabilities to cause considerable damage to physical processes. Syman-
tec [28] recently revealed the existence of Dragonfly, a new targeted attack
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against critical infrastructures. The attack, which was originally thought to
be directed at the energy sector, is now believed to be targeted against the
pharmaceutical industry and may well be one of the most effective cyber
espionage weapons to date. Dragonfly’s ability to penetrate the core of in-
dustrial systems and steal proprietary data raises serious concerns about the
capabilities of future malware.

Motivated by these threats, several researchers (see, e.g., [8, 14, 13]) have
proposed approaches for enhancing the security of current and future crit-
ical infrastructures. In fact, a significant body of research has focused on
understanding critical infrastructure vulnerabilities and quantifying the se-
curity risks of critical infrastructure implementations [5, 27]. One important
outcome is the assessment of the impact of cyber attacks on the normal func-
tioning of physical processes. In such situations, it is imperative not only to
demonstrate and evaluate the disruptive impacts of cyber attacks [12], but
also to quantify the impacts and ultimately provide rankings of the impor-
tance of specific cyber assets.

To address the existing gaps, this paper proposes a novel methodology
for assessing the impacts of cyber attacks on critical infrastructures. The
proposed Cyber Attack Impact Assessment (CAIA) methodology is inspired
by research in system dynamics [9]. The methodology compares the behavior
of complex physical processes in the presence and absence of accidental or
deliberate interventions in order to evaluate the significance of cyber assets.
The interventions may be required to respond to cyber attacks as well as
faults and random events. The methodology is applicable to large-scale,
hierarchical and heterogeneous installations, but most importantly, it may be
used to evaluate the impacts of disturbances (e.g., caused by cyber attacks)
in a variety of production systems. Since the methodology relies on input
data (i.e., one-way communications from a physical process to an assessment
engine) and leverages measurements that are already available at specific
network points (e.g., data historians), it may be applied in critical production
environments where the impacts of control commands can be assessed and
quantified in order to identify critical control variables. This is a significant
aspect of the proposed methodology, which differentiates it from existing
methodologies. Furthermore, the results of the methodology can be used
by various network planning and risk assessment techniques to verify the
assurance of mechanisms that protect critical system components.

The proposed methodology is experimentally validated from several per-
spectives. First, the effects of various parameters on the results are assessed
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using the IEEE 14-bus electric grid model [23]. Next, the scalability of
the methodology is demonstrated using attack scenarios implemented in the
context of the IEEE 300-bus electric grid model [18]. Following this, the
cross-sector applicability of the methodology is evaluated using the well-
known Tennessee Eastman chemical process system [7]. The advantages of
the methodology over graph-theoretic methodologies and electrical central-
ity measures [1, 29] are also demonstrated using several test cases. Finally,
a novel stealthy attack that leverages the methodology results is evaluated
using the IEEE 14-bus electric grid model. This attack is well suited to test-
ing anomaly detection systems because it targets multiple low-impact cyber
assets to cause major infrastructure disruptions.

2. Related work

Several researchers have attempted to evaluate and quantify the impacts
of cyber attacks on physical processes in critical infrastructures. Kundur et
al. [20] proposed a graph-based model to evaluate the influence of control
loops on physical processes; this approach was used to assess the impacts of
cyber attacks on electric power generation. Sgouras et al. [25] evaluated the
impact of cyber attacks on a simulated smart metering infrastructure; the
denial-of-service attacks against smart meters and utility servers caused se-
vere communications interruptions. Sridhar and Govindarasu [26] evaluated
the impacts of cyber attacks on wide-area frequency control applications in
power systems; their research showed that cyber attacks can significantly
impact system stability by causing severe drops in system frequency.

Bilis et al. [1] proposed a systematic approach that uses five metrics de-
rived from complex network theory to assess the impacts of cyber attacks on
electric power systems. The metrics were used to rank nodes in a graph-based
representation of an electric grid. Despite its applicability to large electric
power grids, the work of Bilis and colleagues has two key drawbacks: (i) while
a structural assessment may provide interesting results for synthetic power
grids, it cannot reproduce the behavior of a real physical process; and (ii) the
approach is domain-dependent (i.e., focused on electric power systems) and
its application to other domains (e.g., chemical plants) may not be feasible.

In order to address problems with structural assessments, Wang et al. [29]
proposed electrical centrality metrics to identify the critical nodes in electric
power systems. The approach leverages the electrical admittance matrix to
infer the electrical properties of the underlying physical processes. Despite
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its proven applicability to power systems, the approach has two main short-
comings: (i) it does not account for the complexity of electric grids, where
the behavior of the physical processes are governed by control loops imple-
mented in the cyber realm; and (ii) as in the case of the graph-theoretic
approach of Bilis et al. [1], the electrical centrality measures are specifically
designed for electric power systems and are not applicable to other critical
infrastructures.

Krotofil et al. [19] and Genge and Siaterlis [13] have studied the impacts
of attacks on physical processes after they reach their emergency shutdown
limits. Despite its applicability in the chemical sector, these approaches
cannot deal with attacks that trigger perturbations that do not necessarily
lead to system shutdown.

The research efforts discussed above focus on the impacts of cyber at-
tacks on the normal functioning of physical processes from several perspec-
tives. However, they are all directed at specific scenarios, physical processes
and domain-dependent equipment. In contrast, the CAIA methodology pro-
posed in this paper is applicable to a variety of critical infrastructures and
can quantify the impacts of cyber attacks using simulation-based results as
well as data originating from production systems. Moreover, the methodol-
ogy can be applied in a hierarchical and multiphase fashion, which makes
it highly scalable and appropriate for large-scale critical infrastructures. In-
deed, unlike most existing approaches, the CAIA methodology accounts for
the complexity of the physical and cyber dimensions of critical infrastruc-
tures and can be used in the presence of control loops that govern critical
infrastructure behavior.

3. Cyber attack impact assessment methodology

This section presents the Cyber Attack Impact Assessment (CAIA) method-
ology. It begins with an overview of the architecture of a modern critical
infrastructure, and proceeds to present the design considerations and details
of the CAIA methodology.

3.1. Critical infrastructure architecture

A modern critical infrastructure has a hierarchical structure comprising
two layers: (i) physical layer, which encompasses sensors, actuators and hard-
ware devices that interact with the physical processes; (ii) and the cyber
layer, which encompasses the information and communications technology
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Figure 1: Critical infrastructure architecture.

hardware and software needed to monitor the physical processes and imple-
ment complex control loops. Figure 1 shows a critical infrastructure with
its physical and cyber layers. From an operational point of view, hardware
controllers (i.e., programmable logical controllers (PLCs)), receive data from
sensors, elaborate a local actuation strategy and send commands to actua-
tors. These hardware controllers also send the data received from sensors to
supervisory control and data acquisition (SCADA) servers and execute the
commands that they receive from the SCADA servers.

Critical infrastructure assets vary in size from a few sensors and generic
personal computers to thousands of control objects, RFID devices, industrial
equipment and video surveillance cameras organized in a hierarchical struc-
ture and distributed across a large geographical area. This technological
ecosystem incorporates control loops at various locations to manage opera-
tions and ensure the correct functioning of the underlying physical processes.
They may interact directly with sensor and actuator nodes or remotely with
other controllers in a hierarchical and distributed control system architec-
ture. Essentially, control loops constitute the core of a critical infrastructure
and, therefore, need to be protected from threats to their cyber and physical
dimensions.

3.2. Design considerations

The design assumes large-scale physical processes with several control
loops spread across regional, national or international boundaries. Control
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Figure 2: Causal loop for an electric power grid.

loops rely on observed variables and effect changes to the physical process
state via control variables. A real installations may incorporate thousands of
observed and control variables. The wide variety of cyber attacks and their
potential implementations [3] raise significant concerns about the problem
size and the ability to produce feasible cyber attack impact assessments.

In an attempt to address these challenges, the CAIA methodology adopts
a procedure inspired by system dynamics [9]. System dynamics can explain
how the dependencies between various cyber/physical assets and the pro-
cess behavior change over time. The approach was originally proposed by
Forrester [10] in the mid 1950s as a formal modeling methodology for un-
derstanding the behavior of complex systems over time. Since then, the
approach has been applied in a variety of domains, including industrial pro-
cesses, socioeconomic systems, policy analysis and design.

The main building blocks are causal loop diagrams that map system
causalities and stock-flow diagrams that support qualitative system analy-
ses. Causal loop diagrams are transformed into stock-flow diagrams in order
to enable quantitative as well as causal understanding of system behavior.
Figure 2 shows an example causal loop diagram for a simplified scenario in-
volving an electric power grid. The positive causal link between the generated
power and substation voltage levels denotes that changes in the generated
power result in voltage level changes in the same direction (increase or de-
crease). On the other hand, the negative causal link between voltage and
generated power denotes that voltage increases (i.e., above certain limits
(over-voltages)) may trigger a decrease in the generated power (i.e., a change
in the opposite direction). However, as shown in the figure, voltage levels are
also influenced by user demand and may trigger the execution of dynamic
load shedding algorithms to ensure grid stability. The most significant aspect
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of this example, however, is the causal relationship between load and gener-
ated power. Despite the absence of a direct causal link between the two, an
indirect causal link can be identified via the substation voltage levels. For
example, an increase in user demand leads to voltage level decreases that, in
turn, could trigger an increase in the generated power.

Forrester’s system dynamics approach was shown to be applicable in iden-
tifying control loop dominance [9] (i.e., control loops that dominate system
behavior). The approach involves seven steps during which each variable of
interest in a control loop is deactivated by setting a constant control variable
value. Following this, the process model is run over a specific time interval
to determine if it exhibits the same or different behavior pattern.

Forrester’s approach was refined by Huang et al. [17] with regard to the
sensitivity analysis of control loops. Sensitivity analysis measures how sensi-
tive a model is to changes in its control parameter values. Huang et al. pro-
posed a quantitative analysis of loop dominance, a significant improvement
over Ford’s work [9] that mainly provides binary (yes/no) answers. More
specifically, Huang et al. measure sensitivity by computing the relative vari-
ance between model behavior in the deactivated control loop case and the
reference model behavior. This approach ensures the quantification of the
relative contribution of a control loop to the behavior of a certain variable of
interest.

The CAIA methodology proposed in this work builds on the behavioral
analysis of physical processes proposed by Ford [9] and the sensitivity assess-
ment approach of Huang et al. [17]. However, the methodology is further
refined and adapted in order to embrace the complexity and ubiquitous na-
ture of cyber attacks on critical infrastructures. This leads to three important
observations:

• Research has revealed that cyber attacks on critical infrastructures
leverage a variety of attack vectors that may not necessarily include
traditional hardware-based control loops [2]. For instance, human-
machine interfaces (HMIs), servers and human operators are also inte-
gral critical infrastructure components that may close control loops at
the local, regional or national levels by means of various information
and communications hardware and software. Therefore, CAIA-based
analysis is not limited to traditional control variables, but to any vari-
able exposed to the cyber realm that may be compromised and used to
influence the behavior of a physical process.

8



• CAIA does not simply deactivate control loops (i.e., by repeating the
last value as in [17]); instead, it supports a variety of control parameter
changes. This enables the quantification of the impact of diverse cyber
attacks on the behavior of a physical process.

• CAIA is applied to individual control parameters and it does not pro-
vide a recipe for aggregating all possible attack scenarios and all avail-
able control parameter combinations. Such an attempt is unlikely to
succeed given the complexity of cyber attacks and the large number
of attack vectors available to malicious actors (as described in [2]).
Instead, CAIA effectively quantifies the impact of specific types of at-
tacks on the behavior of a physical process. These results are useful for
ranking cyber assets based on their sensitivity to specific cyber attacks,
identifying the most vulnerable cyber assets and designing control net-
works.

Essentially, CAIA computes the covariances of observed variables before
and after the execution of a specific intervention. This provides a metric for
quantifying the significance of each control variable on the correct function-
ing of a critical infrastructure. Compared with other approaches, CAIA is
well suited to scenarios where the physical process model is not available as
well as production systems for which control and measurement variable data
is available. The latter is particularly useful in post-event analysis where
the emphasis is on establishing the relative impacts of specific faults and of
deliberate cyber attacks on the normal functioning of a system.

Figure 3 illustrates the application of the CAIA methodology to an in-
frastructure. CAIA uses the measured values of the observed variables to
evaluate the impacts of deliberate interventions, possibly even cyber attacks,
on the control variables. In a real-world scenario, CAIA may leverage sys-
tem event logs to infer the start of the assessment period if the interventions
are reported in the logs. For each such event, CAIA records the values of
the observed variables and applies the technique described in this section to
compute the impact ranking of a cyber asset (i.e., control variable). Note
that, although the results presented in the following sections are based on
simulations of physical processes and cyber attacks, CAIA can be deployed
in real installations where, in general, all the required parameter values are
available in the form of historical and real-time data.
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3.3. Formal description

The CAIA methodology relies on measurements made at a set of discrete
time instants T = {1, 2, . . . , t, . . . , m}. J = {1, 2, . . . , j, . . . , n} is the set of
observed variables and I = {1, 2, . . . , i, . . . , k} is the set of control variables.
Furthermore, Y i (i ∈ I) is a two-dimensional m × n matrix containing m
measurements of n observed variables corresponding to an intervention ap-
plied via the control variable ui. Y i

tj and Y 0

tj denote the tth measurements of
the jth observed variable for a scenario involving a specific intervention and
for a scenario without intervention, respectively.

CAIA compares the values of the observed variables before and after the
execution of a specific intervention. The mean value of the j th observed
variable for interventions on the ith control variable is defined by:

Ȳ i
j =

1

m

∑

t∈T

Y i
tj ∀i ∈ I, ∀j ∈ J (1)

The intervention-free mean value for the jth observed variable is defined by:

Ȳ 0

j =
1

m

∑

t∈T

Y 0

tj ∀j ∈ J (2)
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Next, the cross covariance between the j th intervention-free observed vari-
able and the jth observed variable with intervention on the ith control variable
is computed as:

Cij =
1

m

∑

t∈T

(Y i
tj − Ȳ i

j )(Y 0

tj − Ȳ 0

j )

Ȳ 0

j Ȳ i
j

∀i ∈ I, ∀j ∈ J (3)

The Cij values (∀i ∈ I, ∀j ∈ J) comprise the matrix of cross covariances,
also called the impact matrix. This is an intermediate, yet detailed, result of
the impact assessment procedure. As indicated by Equation (3), the rows of
the impact matrix correspond to interventions on control variables while the
columns correspond to observed variables. This two-dimensional structure
expresses the impacts of cyber attacks on the local and global scales. Thus,
the impact matrix can provide useful insights into the impacts of attack
propagation on neighboring assets and the propagation of disturbances to
remote assets.

The impact matrix also provides useful information in the case of observed
variables that are equally significant. However, in some domains, such as the
chemical sector, minor variations of certain products may be more relevant
than major variations of other products. As a result, the impact assessment
is further refined using a weighted impact matrix:

Cw
ij = ωjCij ∀i ∈ I, ∀j ∈ J (4)

where ωj is the weight associated with the jth observed variable. Obviously,
ωj = 1 (∀j ∈ J) when the observed variables are equally significant.

While the weighted impact matrix may provide adequate details required
for impact assessment, specific scenarios (e.g., risk assessments) may require
numerical estimates of the significance of each control variable and observed
variable. To address this, two approaches are proposed for quantifying the
impacts of cyber attacks on different assets and ranking the assets.

The first approach relies on the impact matrix to provide an impact rank-
ing of cyber attacks on the ith control variable:

Rc
i =

∑
j∈J

Cw
ij

∑
l∈I

∑
j∈J

Cw
lj

∀i ∈ I (5)
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where Rc
i quantifies the sensitivity of the control variable to cyber attacks by

aggregating the impact propagation for all observed variables.
The second approach is geared for other scenarios that require the iden-

tification of observed variables that are sensitive to cyber attacks that target
different control variables. In such cases, the following equation, which quan-
tifies the impact ranking of the jth observed variable from the perspective of
cyber attacks targeting control variables, is used:

Ro
j =

∑
i∈I

Cw
ij

∑
l∈I

∑
j∈J

Cw
lj

∀j ∈ J (6)

3.4. Assessment interval

As mentioned above, an attack impact assessment is triggered by system-
level events. The end of the assessment interval may be specified using a
time window whose length may be known a priori or may be determined
dynamically.

In the case of a physical process whose the system response time γ is
known a priori, the window length is fixed and is, therefore, predefined.
However, γ alone may not cover the entire interval required for the process
to reach steady state. Therefore, a second term is added to γ to accommo-
date the deviations of the observed variable values from their mean observed
values. The total length of the time window, denoted by τ , is given by:

τ = γ + max(t − te||Y
i
tj − Ȳ 0

j | ≤ δj) t, te ∈ T, j ∈ J (7)

where t is the current measurement time for the jth observed variable, te is the
time at which the start event was recorded and δj is the maximum tolerable
mean deviation of the jth observed variable. CAIA uses Equation (7) to
record the behavior of the physical process at least for time γ and additionally
for the maximum time needed for the deviations of all the observed variables
to fall below a tolerable value δj.

Figure 4 shows an example of the time window computation. In this
case, the system response time γ is approximately 1.8 seconds. However,
the assessment stops only after the deviation decreases below a specified
threshold.
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Figure 4: Computation of the assessment interval time window.

4. Experimental results

The CAIA methodology is evaluated from several perspectives. First, the
effects of various parameter changes on the CAIA results are evaluated using
the IEEE 14-bus electric grid model [23]. Following this, the scalability of
CAIA is demonstrated by conducting experiments with the IEEE 300-bus
electric grid model [18]. Next, the applicability of CAIA to other domains
is showcased using a complex chemical process system [7]. Comparisons are
also made between CAIA and graph-theoretic and electric centrality met-
ric approaches [1, 29]. Finally, a novel stealthy cyber attack scenario that
leverages the CAIA results is evaluated using the IEEE 14-bus model.

A CAIA prototype was implemented in MATLAB. The IEEE 14-bus and
IEEE 300-bus electric grid models were simulated with the MATLAB PSAT
toolbox [22]. The Tennessee Eastman chemical process [7] was simulated
using MATLAB Simulink.

4.1. Parameter evaluation

The evaluation of the effects of the CAIA parameter values on the assess-
ment results used the IEEE 14-bus model [23]. The model includes five gen-
erators (total generated power of 825MVA), eleven loads, three transformers,
fourteen buses and twenty branches. The IEEE 14-bus model was enhanced
with control loops specific to real-world power systems such as power system
stabilizers, automatic voltage regulators and turbine governors. Furthermore,
secondary voltage regulators, including cluster controllers and central area
controllers, were integrated in the IEEE 14-bus model to provide a realistic
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control-loop-rich environment. Figure 5 shows a graphical representation of
the IEEE 14-bus model. Note that the control loops are represented using
dashed lines.

4.1.1. Stop condition parameters

The evaluation of the effects of various time window values on the stop
condition leveraged the impact rankings of control variables Rc

i . The evalu-
ation was performed by implementing a bus fault attack on each individual
bus line. As shown in Figures 6(a) and 6(b), the measured impact on each
control variable stabilizes after 0.15 seconds. Thus, the CAIA evaluation as-
sumed a time window of 0.15 seconds for the IEEE 14-bus model as well as
for the models used in the other experiments.
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Figure 6: Effect of time window interval size on the impact values for the IEEE 14-bus
model.

The results indicate major differences in the impact rankings of differ-
ent control variables (bus-level circuit breakers). Control variable 1 has the
highest ranking while the remaining circuit breaker control variables have
significantly lower impact rankings. This is because substation 1 has a high
power generator equipped with active control devices, which greatly influ-
ences the evolution of voltage levels throughout the electric grid. From the
perspective of traditional risk assessment techniques [5, 8], this is an impor-
tant finding because such a classification of control variables can help focus
protection efforts on critical assets.
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Figure 7: Effect of observed variable weights on the impact matrix for the IEEE 14-bus
model.

4.1.2. Weighted impact matrix parameters

The heterogeneous characteristic of critical infrastructure components
may require the use of different weights when computing the CAIA impact
matrices. For example, in the case of electric grids, the observed variables
in a specific substation (e.g., voltage levels) may be configured with larger
weights to ensure that their significance is properly represented in the im-
pact matrix. A cyber attack that causes substation-level bus faults in the
IEEE 14-bus model is used to illustrate the effects of weighted observed vari-
ables on the impact rankings. Note that the observed variables in this case
correspond to the substation voltage levels.

First, CAIA was used to derive the impact matrix with identical weights
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(b) Impacts on observed variables.

Figure 8: Effect of observed variable weights on the impact ranking for the IEEE 14-bus
model.

for the observed variables. As already indicated by previous results and
further confirmed by the impact matrix in Figure 7(a), bus 1 is the most
significant because of the attached generator and controllers. These results
are also underscored by the impact rankings of the control variables (Rc

i )
shown in Figure 8(a). However, the impact rankings of the observed variables
(Ro

j) in Figure 8(b) are different because the voltage levels on buses 5, 8 and
9 are highly susceptible to cyber attacks that target control variables.

Next, the voltage levels (i.e., observed variables) for substations 10, 12
and 14 were assigned weights of 1.5, 2.0 and 2.3, respectively, while the re-
maining observed variables had the same initial weights of 1.0. The results in
Figure 7(b) show an increase in the significance of attacks that target these
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observed variables. However, since the weights were assigned to variations in
the values of the observed variables, the impact rankings for the control vari-
ables (Rc

i) do not exhibit significant changes (see Figure 8(a)). As expected,
the increased weights assigned to observed variables 10, 12 and 14 yield sig-
nificant increases in their impact rankings (see Figure 8(b)). These results
demonstrate the importance of tuning CAIA parameters. Indeed, such ad-
justments better reflect the unique aspects of an analyzed infrastructure,
increasing the accuracy of the results.

4.1.3. Attack parameters

As confirmed by previous research [19], different attacks can lead to pro-
foundly different outcomes and impact results. Therefore, it is imperative
to further clarify the applicability of the CAIA methodology with respect to
different attack parameters. To accomplish this, the CAIA output is evalu-
ated from two perspectives. First, the effect of different attack durations on
the CAIA impact rankings is evaluated. Next, the effect of different control
variable changes (i.e., attack magnitudes) on the CAIA results is evaluated
Both the evaluations use a bias attack to intentionally change the input
voltages of automatic voltage regulators by a certain percentage (automatic
voltage regulators control the functioning of generators). The inputs include
a set-point given by a central controller and a measured voltage, which may
be measured locally or received from a remote phasor measurement unit.
The attack scenario assumes that an attacker can modify the values sent
by phasor measurement units and inject the altered measurement packets as
automatic voltage regulator inputs.

More formally, let TA = {ts, . . . , te} be the attack duration, where ts

is the attack start time and te is the attack end time such that TA ⊆ T .
Furthermore, let ut

i denote the value of the ith control variable at time t ∈ T .
Then, the bias attack on ut

i is defined by:

ũt
i =

{
ut

i, for t /∈ TA

ut
i +

α

100
ut

i for t ∈ TA

(8)

where ũt
i is the attacker’s modified value of the ith control variable at time t

and α is the percentage of bias intervention on ut
i.

Figure 9(a) shows the effects of cyber attack duration on the CAIA results.
Attacks with durations of less than one second may lead to different impact

18



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Bias attack duration [s]

R
el

at
iv

e 
im

p
ac

t 
[0

,1
] AVR 1

AVR 2
AVR 3
AVR 4
AVR 5

(a) Attack duration.

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

Percentage of bias intervention [%]

R
el

at
iv

e 
im

p
ac

t 
[0

,1
]

AVR 1
AVR 2
AVR 3
AVR 4
AVR 5

(b) Attack magnitude.

Figure 9: Effect of attack parameters on the impact rankings for the IEEE 14-bus model.

values. However, when the attack duration is increased, the uncompromised
automatic voltage regulators can stabilize the process and the impact rank-
ings are unchanged. Of course, simultaneously attacking several automatic
voltage regulator inputs would result in radically different impact rankings.
Nevertheless, CAIA provides a systematic approach for individually assessing
the significance of the control and observed variables, which can then be used
to identify groups of critical assets for which special protection mechanisms
could be implemented.

Figure 9(b) shows the effects of the bias attack magnitude on the CAIA
results. Note that the impact of the attack is highly dependent on the at-
tack parameters and control loop configuration. In particular, the CAIA
results are mostly influenced by the automatic voltage regulator configura-
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tions. Specifically, AVR1 is highly susceptible to cyber attacks and that its
compromise may have severe repercussions on power grid stability. This sus-
ceptibility is due to the fact that AVR1 is configured to have a 200 p.u. gain
value, which is ten times larger than the gain values of the other automatic
voltage regulators.

4.2. Scalability evaluation

This section evaluates CAIA scalability using the large-scale IEEE 300-
bus electric grid model [18], which incorporates 300 substations, 69 generators
and 411 branches. Two attacks are implemented. The first attack triggers
bus faults on the substation lines by changing the control variables that open
and close bus line circuit breakers. The second attack causes severe load loss
(10% of each attached load) by manipulating the control variables associated
with the dynamic load management hardware. In both cases, the observed
variables correspond to the substation voltage levels.

Both the attacks yield impact matrices with sparse distributions of impact
values. Figure 10(a) shows the impact of the bus fault attack on each control
variable and the propagation of perturbations to neighboring and remote
substations. As expected, the (sparse) diagonal indicates that an attack on
a bus control variable significantly impacts the associated substation.

However, disturbances also propagate to remote substations. In particu-
lar, the observed variables starting from bus 270 are highly sensitive to the
majority of attacks that target different bus line control variables. The main
reason is that, compared with the vast majority of other substations where
the voltage levels range between 66 kV and 345 kV, these are low-voltage
substations with voltage levels ranging from 0.6 kV to 20 kV. Consequently,
attacks on bus control variables associated with these substations have low
impacts on the high-voltage substations.

The computation of the relative impact values based on the impact ma-
trix provide numerical estimates of the attack impact. As discussed above,
the relative impact may be computed from the perspective of the control
variables (Rc

i) or from the perspective of the observed variables (Ro
j). Fig-

ure 11(a) presents the results from the control variable perspective. Due to
their high-voltage profiles, the substations up to substation 270 dominate
the impact ranking. However, the impact ranking is profoundly different
when viewed from the observed variable perspective (Figure 11(b)). Specif-
ically, the impact ranking is dominated by observed variables starting from
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Figure 10: Impact matrices for the IEEE 300-bus electricity grid model for two attack
scenarios.

substation 270 (i.e., low-voltage substations), which are highly sensitive to
disturbances originating from remote high-voltage substations.

Similar results are obtained for the second attack as shown in Figure 10(b).
However, the relative impact values have a different distribution. Figure 12(a)
shows that the impacts on the control variables are highly dependent on the
magnitudes of the decoupled loads. According to the model, substations 97,
99 and 100 have significant real and reactive power demands: substation 97
has 14.1MW of real demand and 650MVAr of reactive demand, substation
99 has 777MW of real demand and 215MVAr of reactive demand while sub-
station 100 has 535MW of real demand and 55MVAr of reactive demand.
Upon applying the 10% load loss due to the attack, the disturbances caused
to these substations lead to severe voltage fluctuations with the peak impact
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Figure 11: Relative impact values in the bus fault attack scenario for the IEEE 300-bus
model.

values shown in Figure 12(a).
Figure 12(b), which presents the impacts on the observed variables (Ro

i ),
shows that the low-voltage substations (from 270 to 300) are also sensitive to
load loss. The results are best explained by the intrinsic power system com-
ponents and connections for which disturbance propagation is governed by
the electrical properties of the physical process. Other researchers (e.g., [29]
have also confirmed this observation and the fact that, in the particular case
of power systems, electrical properties may be inferred from the network ad-
mittance matrix. However, as demonstrated later in this paper, while these
assumptions may hold for electrical power flow analysis, significant limita-
tions are imposed on dynamic analyses and scenarios where complex control
loops govern power grid behavior.
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Figure 12: Relative impact values in the loss of load attack scenario for the IEEE 300-bus
model.

4.3. Cross-sector applicability

This section demonstrates CAIA’s cross-sector applicability using the
complex Tennessee Eastman chemical plant model [7]. Figure 13 shows the
Tennessee Eastman chemical plant model, which has five main units: reac-
tor, condenser, stripper, vapor/liquid separator and compressor. Each unit
requires an automated control loop (dashed line) to ensure stable operation.
The model incorporates twelve control (input) variables (denoted by MV), 41
observed (output) variables (denoted by Y) and 50 internal states. Several
control approaches have been proposed for the Tennessee Eastman chemical
plant model; the evaluation presented in this paper uses the decentralized
control system of Ricker [24]. The evaluation involved executing an integrity
attack that modifies the control variable values sent to the actuators that
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Figure 13: Tennessee Eastman chemical plant model.

manipulate the physical process.
In the first case, equal weights were assigned to the observed variables.

The impact matrix in Figure 14(a) shows that significant impacts occur on
the variables that participate in control loops (Y1–Y4, Y7–Y12, Y14, Y15,
Y17, Y23, Y25 and Y40) whereas only minor impacts occur on the remaining
observed variables.

In the second case, the weights used in [7] to calculate the total pro-
duction costs were employed. Specifically, weights in the range 0.0318 to
30.44 were assigned to thirteen observed variables; the remaining variables
were assigned weights of one. Figure 14(b) shows that assigning different
weights to the observed variables leads to significant increases in the impacts
on the observed variables for attacks on the majority of control variables.
This behavior is shown by the vertical lines in Figure 14(b), which indicate
profound changes in the significance of the observed variables with increased
weights and their corresponding influence on the CAIA results. Using dif-
ferent assignments of weights customizes the CAIA methodology to different
infrastructures, yielding more accurate impact matrices and more meaningful
results.
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Figure 14: CAIA impact matrix for the Tennessee Eastman chemical process model.

4.4. Comparison with other approaches

Numerous approaches have been proposed for assessing the vulnerabilities
in electric power grids. The most common approaches focus on structural
analysis based on centrality measures from graph theory. Bilis et al. [1]
have developed a heuristic methodology that relies on five centrality metrics
from graph theory to identify the most critical nodes in an electric power
grid. The five metrics, degree centrality, eccentricity, betweenness centrality,
centroid centrality and radiality, quantify the significance of nodes from a
purely structural (i.e., topological) perspective. However, Hines et al. [16] and
other researchers [6, 29] have demonstrated that, while structural assessments
may be used to design synthetic power grids [30], they are not well suited to
reproduce the behavior of real electric power grids. Structural abstractions
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Figure 15: Comparison of the CAIA and graph-theoretic methodology results.

convey only the topological characteristics of electric grids while grid behavior
is governed by physics (e.g., Kirchhoff’s laws). Therefore, it is important to
develop methodologies that capture the underlying physics of electric grids
such as that of Wang et al. [29], which is based on electrical centrality metrics.

In the following, the CAIA results are compared with those obtained
using the graph-theoretic and electrical centrality metric approaches. The
evaluation is conducted using the IEEE 14-bus model. Since the graph-
theoretic and electrical centrality metric approaches focus on assessments of
the significance of nodes (i.e., bus lines), the CAIA evaluation incorporates
a cyber attack that targets bus lines by triggering individual bus faults.

First, the CAIA results are compared with those obtained using the
graph-theoretic methodology of Bilis et al. [1]. The heuristic algorithm and
the five centrality measures described in [1] were implemented. Since the ap-
proach of Bilis et al. does not consider control loops, the CAIA methodology
was applied to the controller-free IEEE 14-bus model.

Figure 15 compares the results of the two methodologies. Since the ap-
proach of Bilis et al. [1] is exclusively based on node connectivity, nodes that
are more connected have greater impacts. However, the CAIA results and
those presented in the previous sections demonstrate that node significance
is highly dependent on node role and on the attached devices (e.g., stability
controllers) that have important roles in maintaining system stability.

Next, the CAIA results are compared with the results of the electrical
eigenvector centrality metric methodology proposed by Wang et al. [29]. Un-
like the graph-theoretic methodology of Bilis et al. [1], the electrical eigen-
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Figure 16: Comparison of the CAIA and electrical centrality metric methodology results.

vector centrality metric methodology provides a measure of the significance
of a particular node in a network based on an adjacency matrix. In fact, the
eigenvector centrality metric methodology builds on the electric admittance
matrix, which embodies the electrical properties of the physical process. The
electrical eigenvector centrality metric methodology was implemented as de-
scribed in [29] and the results were compared with the CAIA results for the
controller-free IEEE 14-bus model. Figure 16 shows that significant similar-
ities exist in the rankings obtained using the two methodologies. The differ-
ences are due to the fact that CAIA accounts for the output of the entire
electric grid model in a dynamic simulation while the electrical eigenvector
centrality metric methodology relies exclusively on the admittance matrix,
which does not consider the time dimension.

At this point, it is important to highlight the key advantages delivered
by the CAIA methodology. Many elements are omitted when a methodology
focuses purely on the structural properties or on the physical properties of a
critical infrastructure. This is significant because the physical dimension of a
critical infrastructure is tightly linked to the cyber domain via control loops,
which can profoundly affect the behavior of the physical processes. There-
fore, CAIA is capable of assessing not only controller-free physical processes,
but also the more complex and ultimately more realistic critical infrastruc-
ture itself, in which the underlying processes are governed by a hierarchical
structure of automated and human control loops. Figure 17 illustrates the
unique capabilities of CAIA by comparing the results with and without con-
trol loops for the IEEE 14-bus model in the presence of a bus fault attack on
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Figure 17: Comparison of CAIA results with and without control loops for the IEEE
14-bus model.

bus line control variables.
In the controller-free scenario, buses 4 and 5 have the highest relative

impact values, which rank them as the most significant in the IEEE 14-bus
model (Figure 18(a) where the measured impacts are represented using gray
circles). This is explained by the positions of the buses in the electric grid
and by the fact that they are responsible for transferring the power produced
by the generators connected to buses 1, 2 and 3 to the upper (i.e., “Nordic”)
region. Since the power produced by the generators connected to buses 1,
2 and 3 is 94% (775MVA) of the total generated power, their disconnection
(via buses 4 and 5) leads to a voltage collapse in the upper region.

As stated above, CAIA can also be used to evaluate the impacts of cy-
ber attacks in the presence of control loops. Figure 18(b) shows the CAIA
results obtained for the IEEE 14-bus model with a power system stabilizer,
automatic voltage regulators, turbine governors, cluster controllers and cen-
tral area controllers enabled. In this case, the distribution of the bus-level
impacts on the power grid is vastly different from when no control loops
exist. As illustrated in Figure 17, with the stabilizer and control devices in
place, CAIA indicates that buses 1 and 2 are the most critical to the normal
functioning of the electric grid. This is because buses 1 and 2 are connected
to high power generators equipped with active control devices that greatly
influence the evolution of voltage levels throughout the grid (Figure 18(b)).
These results can be used to strengthen the security of communications and
control loops involving the associated control variables. Furthermore, the
CAIA results may be used to drive advanced network planning and risk as-
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sessment methodologies such as those proposed by [5, 13].

4.5. Stealthy cyber attack

As already discussed, the cyber attack impact assessment methodology
proposed in this work has applications ranging from risk assessment to control
network design. However, the methodology also has (less obvious) uses to an
attacker. For example, a malicious actor could use CAIA to identify the low-
impact control variables. A complex large-scale cyber attack could then be
created in which multiple low-impact variables are affected simultaneously to
cause severe infrastructure degradation. The most significant aspect of this
scenario is that affecting low-impact variables enables an attacker to maintain
stealth, hinder detection by process-aware anomaly detection systems and
increase the number of compromised cyber assets.

In order to attain his goals, an attacker must have access to measurements
taken by sensor devices. Additionally, the attacker must be able to trigger
changes to control variable values and record the effects of these changes.
Obviously, acquiring such access to critical resources may be difficult. Never-
theless, it is reasonable to assume that the attacker could use laboratory-scale
testing facilities as well as simulation models to gain significant knowledge
of the targeted infrastructure. After constructing the CAIA impact matrix,
the attacker could carefully plan and execute the attack against the real
infrastructure.

The IEEE 14-bus model is used to illustrate the effects of a stealthy
attack that is designed based on CAIA results. The scenario assumes that
the attacker seeks to compromise the maximum number of line breakers (each
breaker controls the connectivity between two substations). Figure 19(a)
shows the impact matrix computed by the attacker. Next, the attacker has
to identify the low-impact breaker variables. This information is shown in
Figure 19(b): the attacker has to compromise line breaker 7, followed by
breakers 3, 18, 8, 1 and 13, and, finally, breaker 15. Compromising the
remaining breakers could lead to more significant impacts that may be visible
to operators and/or trigger alarms by anomaly detection systems.

Figure 20 shows the stealthy attack that compromises each breaker and
disconnects each substation line in sequence. The results demonstrate that
the attacker’s actions are stealthy until the eighth circuit breaker is compro-
mised. This is confirmed in the operator’s view of the monitored substation
voltage levels (Figure 21), where the attacker’s actions on the first seven
breakers (executed during the zero to six second time interval) lead to minor
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voltage changes that are within the normal operating limits. However, after
the eighth breaker is compromised (after seven seconds), the voltage levels
begin to collapse. Such an event generally triggers automated circuit break-
ing and alarms that enable the operators to isolate and mitigate the effects
of the cyber attack. However, by this time, the attacker may already control
a large number of power grid assets, enabling him to severely degrade the
voltage levels on a large scale.

To further illustrate the application of CAIA to identify low-impact assets
when creating stealthy cyber attacks, the effects of two random cyber attacks
on the IEEE 14-bus model line breakers are demonstrated. Figure 22 shows
that an operator can detect both attacks more rapidly than the stealthy
attack discussed above. In the case of the first random attack, the voltage
collapse is visible after only two seconds, and after four seconds for the second
random attack. These results underscore the fact that malicious entities must
plan attacks on critical infrastructure assets very carefully to ensure their
successful execution. Other researchers (e.g., [19]) confirm that attackers
must be aware of the complexities of the cyber and the physical dimensions
of critical infrastructures in order to maximize attack impact.

It is important to emphasize that the successful execution of the stealthy
attack described in this section would require significant resources. The
attacker could perform most of the CAIA computations in advance based
on physical process models and laboratory-scale experiments. However, the
attack ultimately has to be launched against a real infrastructure, and for
maximal impact, the attacker would need to experiment with the actual
target or a close approximation of the target. To defend against complex,
stealthy attacks, security personnel could use CAIA to identify the critical
cyber assets. These assets could be positioned in critical security zones with
special protection mechanisms to reduce the attack risk.

5. Conclusions

The CAIA methodology, which is inspired by systems dynamics, is de-
signed to assess the impacts of cyber attacks on control variables, which are
responsible for the correct functioning of physical processes in critical infras-
tructures. The methodology has been evaluated from several perspectives
using a variety of simulated physical processes (IEEE 14-bus, IEEE 300-bus
and Tennessee Eastman models). The results demonstrate the effectiveness
and broad applicability of CAIA in assessing the impacts of cyber attacks
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on critical infrastructures. CAIA is superior to graph-theoretic and electrical
centrality metric approaches because it supports effective dynamic behavioral
analyses of critical infrastructures as well as analyses of critical infrastruc-
tures comprising various cyber and physical components, including critical
control loops; furthermore, CAIA is applicable in a range of critical infras-
tructure sectors. Future research will focus on evaluating the applicability
of CAIA to production systems and on integrating CAIA results in control
network design methodologies.
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Figure 18: Structural view of the CAIA results for the IEEE 14-bus model.
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Figure 19: Stealthy cyber attack on the IEEE 14-bus model line breakers.
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Figure 20: Stealthy cyber attack sequence that disconnects substation lines.
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Figure 21: Operator’s view of the stealthy attack sequence.
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Figure 22: Operator’s view of two random cyber attacks.
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