
1

On the use of Emulab testbeds for scientifically
rigorous experiments

Christos Siaterlis, Andres Perez Garcia1, Béla Genge
Institute for the Protection and Security of the Citizen

Joint Research Centre
Via E. Fermi 2749, 21027 Ispra (VA) Italy

e-mail: [christos.siaterlis,andres.perez-garcia,bela.genge]@jrc.ec.europa.eu

Abstract—Internet is considered a Critical Infrastructure (CI)
that is vital for both the economy and the society. Disruptions
caused by natural disasters, malicious human actions and even
hardware failure pose serious risks. Emulation testbeds are
increasingly used to study the Internet in order to improve protec-
tion and response mechanisms. These are frequently considered
more adequate than software simulators to realistically recreate
the complex behavior of networks. In this paper we study how
testbeds based on the Emulab software can be used to conduct
scientifically rigorous experiments, specifically in terms of: a)
experiment fidelity, b) repeatability, c) measurement accuracy,
and d) interference.

Our study, which is based on extensive experimentation on
different testbeds, indicates that the current trend of using emu-
lation testbeds is justified as both realistic and efficient. We show
that Emulab-based experiments are representative of real systems
in terms of emerging behavior (qualitative) and that repeatable
experiments are possible. The main contribution of this tutorial
article is that based on experimental results we identified caveats
and provided insights to significant configuration parameters and
limitations that are further elaborated into a set of guidelines that
any Emulab user should be aware of. Then, he/she can decide
about the importance of each guideline in the context of a specific
study and experiment.

Index Terms—Emulation, fidelity, testbeds, repeatability, net-
work testbeds.

I. I NTRODUCTION

T HE increasing dependence of Critical Infrastructures
(CIs) from Information and Communication Technolo-

gies (ICT) has been recognized as a trend that might encom-
pass significant risks to our society. Studying the resilience of
such CIs, e.g., the Internet [1], and of complex cyber-physical
systems [2], [3] in general is therefore an important research
topic. The resilience of complex systems or system of systems
could be studied by injecting faults and disruptions into real
systems, software simulators or hardware emulators. Experi-
mentation with real production systems in extreme conditions
has always been difficult due to concerns about potential
side-effects to mission critical services. On the other hand
the development of a dedicated experimentation infrastructure
with real components is often economically prohibitive. Soft-
ware based simulation has always been considered an efficient
approach to study physical systems, mainly because it can
offer low-cost, fast and accurate analysis. Nevertheless,due

1: Corresponding author. Tel:+39-0332-783720 Fax:+39-0332-789576

to the diversity and complexity of protocols, systems and
architectures of CIs, as well as the lack of specialized tools
for simulating a CI, hardware-based emulation is considered
a flexible and powerful approach. Emulation approaches, and
specifically those based on the Emulab software [4],[5], are
becoming very popular in many research areas, e.g., network-
ing and distributed systems. Emulab is a network testbed, able
to recreate a wide range of experimentation environments in
which researchers can develop, debug and evaluate a complex
system [6]. Emulation is particularly useful for security and
resilience analysis [7], [8], because in order to study those
attributes a researcher has to expose the system-under-test
to high load and extreme conditions, under which, software
simulators fail to capture reality.

In this paper we present a study of different characteris-
tics of an Emulab-based testbed, namely, experiment fidelity,
repeatability within and across different testbeds as wellas
measurement accuracy and interference. These features are
necessary to conduct scientifically rigorous experiments.In
order to test the fidelity we compare results from experiments
employing emulation against results from experiments that
use real hardware and software, i.e., without emulation. The
experiments reveal how fidelity can be affected by different
network load conditions and emulation specific parameters,
e.g., queue size. Then, we check the repeatability of the results
by comparing different experiment runs. Furthermore we study
different measurement techniques in terms of accuracy and
interference. To the best of our knowledge, the related workis
limited and previous studies [9], [10] compare different emu-
lation/simulation approaches rather than systematicallystudy-
ing the aforementioned characteristics, for example studying
fidelity by comparing Emulab-based configurations against a
real reference configuration. This signifies an important gap
in the literature that we address in this article.

Our contribution does not only lie on the presented experi-
mental results, but also in the transformation of our experience
in terms of caveats, significant configuration parameters and
limitations into a set of guidelines that researchers coulduse
as a reference while using testbeds such as DETER [7], or
Emulab in general. This would lower the barrier for new
researchers trying to use Emulab and promote scientifically
rigorous experimentation.

The paper is structured as an advanced tutorial and builds
upon the basic concepts that were introduced by White et

2

Pool of available

resources

Generic PCs
routers

switches

Servers running Emulab

software (boss & ops)

ns

Virtual

topology

3. The desired

virtual topology

is recreated

including

monitoring nodes

1. User

provides

experiment

description

2. Emulab sw

reserves needed

resources and

configures

physical topology

Fig. 1. Main steps for recreating a virtual network topologywithin an Emulab-based testbed.

al. [6], but it is not a replacement of the original tutorial
provided with the Emulab software [11], [12]. We begin
in Section II with a short description of a typical Emulab-
based testbed and its characteristics. Then, we proceed with
our study and experimental results in Section III. Here, we
start with the presentation of the experimental setup and
we continue addressing one by one the characteristics of
fidelity, repeatability, measurement accuracy and measurement
interference. We conclude in Section IV where we summarize
our findings and indicate directions for future work.

II. T HE EMULAB PLATFORM AND ITS FEATURES

One of the most promising approaches for experimentation
with large and complex systems, e.g., those found in industrial
Supervisory Control and Data Acquisition (SCADA) networks
[13], is the use of emulation testbeds. Pure software simulation
is often too simplistic to recreate complex environments and
the use of an ad-hoc testbed, where researchers have to
deploy and configure manually every experimental setup, is
not recommended because it is very time-consuming and error-
prone to setup, maintain and change. A trend, that is constantly
becoming more popular, is the use of emulation testbeds
like Emulab. We have developed in our laboratory a testbed,
called EPIC (Experimental Platform for ICT Contingencies),
using the Emulab architecture and software, that allows us to
automatically and dynamically map physical components, e.g.,
servers and switches, to a virtual topology. In other words,
the Emulab software configures the physical topology in a
way that it emulates the virtual topology as transparently as

possible. This way we gain significant advantages in terms of
repeatability, scalability and controllability of our experiments.

The basic Emulab architecture consists of two control
servers (bossand ops), a pool of physical resources that are
used as experimental nodes (generic PCs, routers or other
devices) and a set of switches that interconnect the nodes.
The boss server provides a web interface to the users and
controls the testbed’s internal operation, while theops server
provides to users a login shell from which they can access
the experimental nodes and on which they can store the data
required or generated by their experiments.

Once logged into the web interface, the following steps
describe the experiment life cycle within our testbed (Fig.1):

1) First we need to create a detailed description of the
virtual network topology,the experiment script, using
an extension of the NS language [14], [15]. The use
of a formal language for experiment setup eases the
recreation of a similar setup by any other researcher who
wants to reproduce our results. In the experiment script
we enumerate similar components as different instances
of the same component type. This way pre-defined
templates of different components (a Linux server tem-
plate is a disk image with a pre-installed Linux OS)
can be easily reused and automatically deployed and
configured.

2) Whenever we want to run an experiment we instantiate
it by using the Emulab software, which automatically
reserves and allocates the physical resources that are
needed from the pool of available components. This pro-
cedure is calledswap-in, in contrast to the termination

3

of the experiment, which is calledswap-out.
3) Furthermore, the software configures network switches

in order to recreate the virtual topology by connect-
ing experimental nodes using multiple VLANs. Finally,
before the testbed is released for experimentation, the
software configures packet capturing of predefined links
for monitoring purposes.

At this point it is important to note that in step 3, the
Emulab software uses two different strategies for network link
emulation, e.g., delay, packet loss and bandwidth, according
to the predefined instructions given in the experiment script.
The delay-node-shapingstrategy, which is the default con-
figuration, uses extra PCs to emulate network links. These
PCs, hereinafter calleddelay nodes, run Dummynet [16] to
simulate link level characteristics. A different approachis
taken by theend-node-shapingstrategy that does not use extra
resources and therefore runs Dummynet inside the end user’s
experimental nodes. In Section III-B we show that the end-
node-shaping strategy can lead to unstable and unrealistic
results [17].

As an example, we provide the basic experiment script that
was used in our study. It recreates a 100Mbps LAN with three
nodes and end-node-shaping strategy enabled. For one of the
nodes we define a 10Mbps connection to the LAN in order to
test different emulation speeds. For further information on the
NS syntax, refer to the Emulab documentation [11], [12].

set ns [new Simulator]
source tb_compat.tcl

Nodes
set node1 [$ns node]
set node2 [$ns node]
set node3 [$ns node]

Lans
set lan0 [$ns make-lan "$node1 $node2 $node3" 100Mb 0.0ms]
tb-set-node-lan-bandwidth $node3 $lan0 10Mb
tb-set-endnodeshaping $lan0 1

$ns rtproto Static
$ns run

In order to conduct scientifically rigorous experiments, an
Emulab testbed has to provide realistic results, appropriate
measurement tools and the capacity to reproduce the exper-
iments by a different researcher in a similar testbed. We have
analyzed these properties through the following characteristics:

• Fidelity : refers to how accurately an experimental plat-
form reproduces a real system, i.e., system represen-
tativeness. In many cases reproducing in an absolute
way all details of a real system might not be necessary.
Therefore it is preferable for an experimental platform
to offer an “adjustable level of realism”, meaning that
one can use the level of detail that is sufficient to test
the experiment hypothesis. For example, one experiment
might need to reproduce a network at the very low level
using real routers and real traffic (reproducing even the
lower layers of the OSI model, i.e., Layer 1 and 2), while
for another experiment the use of a software router and
synthetic traffic generators might be sufficient (focusing
for example at the application layer). The concept of
adjustable level of realism gives the option to use real

hardware when it is really needed, and simulators or other
abstractions when not.

• Repeatability: represents the ability to repeat an ex-
periment and obtain the same or statistically consistent
results. Repeatable experiments require a controlled en-
vironment but to achieve them the researcher has to
define clearly and in detail the initial and final state of
the experiment as well as all events in between these
two states. These states and events form an experiment
scenario. To reproduce a previously stored experiment
scenario the researcher should be able to setup the
experimental platform in the initial state and trigger all
necessary events in the right order and time of occurrence.

• Measurement Accuracy and Interference: experiments
should be accurately monitored and measurements should
not interfere with the experiment because they might alter
the outcome of the experiment.

III. E XPERIMENTAL RESULTS

A. Experimental setup

In this work we study the Emulab software as a platform
to conduct scientifically rigorous experiments through four
characteristics, namely, fidelity, repeatability, measurement
accuracy and measurement interference. Based on our results
and experiences, we intend to provide assistance to future users
of Emulab by developing a list of user guidelines and caveats.
Ultimately, it will be up to the user to identify whether or not
a particular behavior of Emulab could affect the reliability of
her/his results.

The logical topology we have used in all the following
experiments consists of a 100Mbps LAN with three user nodes
(Fig. 2), one of them connected at 10Mbps. This allows us to
experiment with the emulation of both 100Mbps and 10Mbps
interfaces. In the case of 10Mbps, hardware limitations in
terms of packets per second processing are not very crucial
since the injected traffic is much lower.

We have defined three configurations, two of them using
emulation strategies and a real one, without emulation, that is
used as a reference:

1) Emulation with delay-node-shaping (Fig. 2(a)): in this
configuration, which is the default in Emulab, three de-
lay nodes running the Dummynet software are allocated
by Emulab in order to model the links which connect
the user nodes to the network. Dummynet configures two
pipes, inbound and outbound ones, to shape traffic enter-
ing and leaving a user node. Inbound and outbound pipes
have queues of 5 and 50 slots respectively. Therefore, six
experimental nodes are needed to run this configuration.

2) Emulation with end-node-shaping (Fig. 2(b)): this sec-
ond configuration of Emulab reduces the number of
experimental nodes by enabling Dummynet into the user
nodes. Therefore, we only need three experimental nodes
to run the same experiment, instead of six as in the
previous case. The only drawback is that this affects the
performance since we are running on the same hardware
all the processes, end user and network emulation ones.

4

1Gbps

1Gbps 1Gbps

a) With delay nodes b) With End-node-shaping

10Mbps100Mbps

100Mbps
G0/1

G0/2 G0/3

c) Real Network (no emulation)

505 505

550 550

10Mbps

emulation

delaynode0

delaynode1 delaynode2

1Gbps

100Mbps

emulation

1Gbps1Gbps

100Mbps

emulation

1Gbps 1Gbps

1Gbps

100Mbps

emulation

100Mbps

emulation
10Mbps

emulation

550550

Fig. 2. The three configurations used in our experiments: a) and b) with emulation, c) reference network without emulation.

As for the queuing configuration, it is identical to the
first configuration.

3) Reference configuration without emulation (Fig. 2(c)):
it consists of a real network with three nodes connected
to a Cisco 2950 switch at the same speeds that we are
testing in the previous emulated configurations. Neither
emulation nor simulation is used in this case.

In most of the experiments all nodes are of the same type
in order to avoid that results are altered due to hardware
dependencies. They are Dell PCs with AMD 2GHz Athlon
processors and 2GB of RAM, running FreeBSD as operating
system. The only exception is while testing the repeatability
(Section III-C), where we introduce a second type of hardware
in order to study the effect of combining different types of
hardware. This second one consists of Fujitsu PCs with Intel
PIV processors and 1GB of RAM. As for the operating system
in the delay-nodes it is always FreeBSD 6.4.

We have used different tools and approaches to collect
and to analyze the experimental data, particularly for the
measurement accuracy experiments (Section III-D):

• Iperf [18] is a tool to generate UDP traffic between a
source node and a sink node. But it also includes a built-
in measurement functionality that provides statistics such
as sustained bandwidth and packet loss, that we use to
assess the network performance.

• The Constant Bit Rate (CBR) traffic generator sup-
ported by Emulab works similar to Iperf. It does not
provide statistics, but it is easier to use and schedule in
the NS script file as shown in [12].

• TCPReplay [19] uses a previously captured traffic file
in libpcap format and replays it back into the network,
usually to test switches, routers and firewalls. It is a
powerful tool that allows to classify traffic as client or
server and rewrite Layer 2, 3 and 4 headers.

• TCPivo [20] is another, less known, free and open-source
tool that supports high-speed packet replay from a trace
file.

• TCPdump [21] is a well known software that allows to
capture and to store packets transmitted and received on
a network interface.

• The “SPAN” or “ monitor ” feature of Cisco switches
[22] together with TCPdump is a less intrusive way to
intercept traffic, in the sense that it does not affect the
node performance since it is an external process. The
switches we use in the experimental plane of the platform
allow us to configure two monitor sessions.

In this study we used the aforementioned traffic generators,
i.e., Iperf, TCPReplay and TCPivo, in order to produce non-
responsive traffic (open-loop), e.g., unidirectional UDP flows.
These tools fulfill the needs of our experiments, which are
focused on the network emulation capabilities of the Emu-
lab platform, rather than on application protocols. However,
researchers might find the need to use other tools, such as
Tmix [23] and Swing [24], that can produce responsive traffic
(closed-loop).

An important element of scientific analysis is to explore
the parameter space with multiple experiments and analyze
the collected results with statistical methods. In this sense,
we show in Fig. 3 how we can run multiple experiments
in an Emulab testbed. The shell script swaps in and out an
experiment from the serverops, generates traffic with different
bandwidth and packet size, and finally stores statistics in a
repository for further analysis.

B. Fidelity

We have studied the fidelity of Emulab in terms of network
performance and shaping accuracy.

5

#!/bin/csh
Variables
set MYPROJ=projectX
set MYEXP=experimentX
set LOGFOLDER=/local/logs
set RIPERF=/usr/local/etc/emulab/emulab-iperf
set RSSH="ssh -n -o StrictHostKeyChecking=no"
Repeat 10 times the experiment
foreach n (1 2 3 4 5 6 7 8 9 10)

Swap in experiment EXP from project PROJ
script_wrapper.py --server=boss swapexp PROJ EXP in
And wait until it is active
script_wrapper.py --server=boss expwait PROJ EXP active
Launch server iperf in sink node
$RSSH nodeX.$MYEXP.$MYPROJ "$RIPERF -s -u

>>& $LOGFOLDER/nodeX-iperf.log &"
Range of bandwidth to generate
foreach bw (1000000 5000000 10000000 20000000)

Range of packet size
foreach ps (64 128 256 512)
Launch client iperf to generate traffic
$RSSH nodeY.$MYEXP.$MYPROJ

"$RIPERF -c nodeX -l $ps -t 30 -b $bw -u
>>& $LOGFOLDER/nodeY-iperf.log"

end
end
Syncing & Archiving
loghole -e PROJ/EXP sync
loghole -e PROJ/EXP archive
loghole -e PROJ/EXP clean -n -f
Swap out the experiment
script_wrapper.py --server=boss swapexp PROJ EXP out
And wait until the process has ended
script_wrapper.py --server=boss expwait PROJ EXP swapped

end

Fig. 3. Method of conducting multiple experiments in order to explore the
parameter space (several combinations of bandwidth and packet sizes).

1) Network performance:In order to study the network
performance, i.e., received traffic by the sink node versus
sent traffic from the source node in the cases of 100Mbps
and 10Mbps LAN emulation, we generate UDP traffic with
Iperf from node1, first to node2 and then to node3. We run
multiple experiments through a script as shown in Fig. 3,
varying the packet size from 64 bytes up to 1408 bytes, and
the generated traffic from 0Mbps up to either 100Mbps or
10Mbps depending on whether the sink node is connected at
100Mbps or 10Mbps. Fig. 4, 5 and 6 depict the experienced
network performance for the reference scenario and the two
emulation strategies. The figures (a) and (b) correspond to the
two different network speeds.

The ideal performance would be a diagonal straight line
(y=x) reaching up to the nominal interface speed and followed
by a horizontal line. In reality, the behavior of the configura-
tion without emulation (Fig. 4) is close to the ideal one, at least
for packets larger than 256 bytes. Even in the worst case, of
64 byte packets, the performance reaches 80% of the interface
speed. Above this point, the switch is not able to handle all
the packets and there are drops before reaching the maximum
speed.

Conversely, if we look at the emulated configurations, with
a delay-node-shaping strategy (Fig. 5) we can see that the
performance depends significantly on the packet size, specially
in the 100Mbps case. However, we still see the same behavior
(curve shape). For each packet size the performance follows
the y=x line up to a saturation point and then it becomes
horizontal. In the 10Mbps case the situation is better and the
performance reaches the interface speed for packets largerthan

128 bytes. In any case, the figures confirm the expected result
because the smaller the packet is, the higher the number of
generated packets is, given a fixed bandwidth. This implies that
the hardware and software components of the topologies need
to handle more packets and they reach the processing limit
earlier. This limit is due to inherent hardware and software
limitations in terms of packets per second and interrupts per
second processing as explained in [25].

On the other hand, in the end-node-shaping configuration
(Fig. 6) the behavior differs from the expected one. As the
traffic grows, the performance seems to follow the behavior
mentioned earlier, but at a certain point, the curves divert
and tend again to the y=x diagonal line. This means that
Dummynet fails to model the network and exhibits an unstable
behavior, which is attributed to the double role of the user
nodes, generating and processing traffic (Iperf) as well as
network emulation with Dummynet.

Based on these results, we are able to confirm that exper-
imentation with Emulab provides realistic results in termsof
trend and behavior when using delay-node-shaping configu-
ration. Obviously, we cannot compare the results in absolute
terms because the values of our metric are very hardware-
dependent. In fact, we can expect better results in terms of
performance by using more powerful nodes in the emulation
platform, as well as worst results by using a less powerful
switch in the real scenario, but in all cases, with analogous
behavior.

End-node-shaping strategy might still be useful in the case
of experiments with low bandwidth utilization (0-30%) and
limited number of experimental resources.

Guideline 1: Emulab with delay-node-shaping strategy
can realistically recreate with acceptable quality the
performance of real networks, while the end-node-
shaping strategy is reliable only in the case of low
bandwidth utilization (0-30%).

2) Shaping accuracy:There are two main configuration
parameters in Dummynet that affect its task as traffic shaper,
namely queue size and delay. In this section we discuss the
bandwidth shaping accuracy of Dummynet with respect to
these two parameters in the delay-node-shaping configuration
(Fig. 2(a)). Since the inbound queue in Dummynet is signif-
icantly smaller than the outbound (5 versus 50), the inbound
queue is the most restrictive and the place where most of the
drops occur. We should underline that all interfaces in our
experiments are physically configured at 1Gbps and it is up to
Dummynet to shape the traffic at the desired speed. Thus, it is
possible to measure more than 100Mbps in some interfaces.

In order to configure a 100Mbps Dummynet pipe with a
queue size of 10 slots, we can perform the following remote
action in the delay nodes from the script given in Fig. 3:
"sudo ipfw pipe pipe_number config bw 100Mbit/s queue 10"

We launched a set of experiments where we generated more
than 140Mbps of CBR traffic with large packets from node1,
first to node2 and then to node3 with different inbound queue
sizes and delay-node-shaping configuration. Fig. 7 shows the

6

0

10

20

30

40

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70 80 90 100 110 120

R
e
c
e
iv

e
d
 T

ra
ff
ic

 i
n
 n

o
d
e
2
 (

M
b
p
s
)

Sent Traffic in node1 (Mbps)

64bytes

128bytes

256bytes

512bytes

768bytes

1024bytes

1280bytes

1408bytes

(a) traffic toward 100Mbps node

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
e
c
e
iv

e
d
 T

ra
ff
ic

 i
n
 n

o
d
e
3
 (

M
b
p
s
)

Sent Traffic in node1 (Mbps)

64bytes

128bytes

256bytes

512bytes

768bytes

1024bytes

1280bytes

1408bytes

(b) traffic toward 10Mbps node

Fig. 4. Network performance in the reference configuration without emulation.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100 110

R
e
c
e
iv

e
d
 T

ra
ff
ic

 i
n
 n

o
d
e
2
 (

M
b
p
s
)

Sent Traffic in node1 (Mbps)

64bytes

128bytes

256bytes

512bytes

768bytes

1024bytes

1280bytes

1408bytes

(a) traffic toward 100Mbps node

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
e
c
e
iv

e
d
 T

ra
ff
ic

 i
n
 n

o
d
e
3

 (
M

b
p
s
)

Sent Traffic in node1 (Mbps)

64bytes

128bytes

256bytes

512bytes

768bytes

1024bytes

1280bytes

1408bytes

(b) traffic toward 10Mbps node

Fig. 5. Network performance in the emulation configuration using delay-node-shaping.

0

10

20

30

40

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70 80 90 100 110 120

R
e
c
e
iv

e
d
 T

ra
ff
ic

 i
n

 n
o
d
e
2
 (

M
b
p
s
)

Sent Traffic in node1(Mbps)

64bytes

128bytes

256bytes

512bytes

768bytes

1024bytes

1280bytes

1408bytes

(a) traffic toward 100Mbps node

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
e
c
e
iv

e
d
 T

ra
ff
ic

 i
n
 n

o
d

e
3
 (

M
b
p
s
)

Sent Traffic in node1 (Mbps)

64bytes

128bytes

256bytes

512bytes

768bytes

1024bytes

1280bytes

1408bytes

(b) traffic toward 10Mbps node

Fig. 6. Network performance in the emulation configuration using end-node-shaping.

7

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

D
e
la

y
 i
n
 d

e
la

y
n

o
d
e
1

 (
m

s
)

T
ra

ff
ic

 (
M

b
p

s
)

Queue size (slots)

Node1 out
delaynode0 out
delaynode1 out
Delay in delaynode1

(a) traffic toward 100Mbps node

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

T
ra

ff
ic

 (
M

b
p

s
)

Queue size (slots)

Node1 out

delaynode0 out

delaynode2 out

(b) traffic toward 10Mbps node

Fig. 7. Influence of Dummunet queue size in shaping performance.

results for 100Mbps and 10Mbps shaping, where each pulse
corresponds to a different inbound queue size, from 1 to 15
slots. In this figure three curves are visible: a) the dashed curve
depicts the traffic leaving node1, more than 140Mbps; b) the
dotted curve corresponds to traffic leaving delaynode0, where
the outbound speed of 100Mbps for the node1 is modeled;
and c) the solid curve shows traffic leaving delaynode1 or
delaynode2, depending on the case, where the inbound speed
is modeled for the sink nodes.

In the reference configuration there are no delay nodes and
the user nodes have their interfaces connected at the respective
speed of 10Mbps and 100Mbps. In this case we only see
100Mbps of traffic leaving node1 and entering node2, and
10Mbps entering node3.

The results of the emulated configuration show that there is
a clear impact of the queue size in the shaping accuracy for
the 100Mbps case, where the queue size has to be 11 slots
or larger to reach the desired speed. On the contrary, for the
10Mbps case, this speed is already reached with 2 slots in the
queue size.

Although this is a useful observation, the user should be
careful before configuring a larger queue size since it might
affect the network delay, which depends on the following
variables:

• Delay-node processing time is the most influencing vari-
able and depends on Dummynet’s queue size and the
hardware processing power.

• Switch processing time is insignificant compared to the
delay-node processing time.

• Transmission time is insignificant compared to the delay-
node processing time, considering that all the interfaces
are configured at 1Gbps.

• Propagation delay is minimal in a LAN configuration.
In order to measure the impact of the first variable in

the network delay, we captured packets entering and leaving
delaynode1 in the previous experiments. In Fig. 7(a), the
double curve is an exponential trend line of the average delay
in delaynode1 for the different queue sizes. It clearly shows
that the delay increases as the queue size does, although it is
only after 8 slots when it does it significantly. In the case of

11 slots, where a good shaping accuracy is reached, the delay
increases 0.37ms compared to the case of 2 slots. This delay
could be multiplied in larger topologies if the packets traverse
many delaynodes with large queue sizes.

Another important observation is that configuring a different
delay in Dummynet, instead of 0ms, does not change the
results in terms of shaping accuracy.

Guideline 2: Accurate shaping is hard to achieve under
high load conditions without introducing network
delay (< 0.5ms) due to processing. Depending on the
goal of the experiment and the size of the network, the
inbound queue size of Dummynet should be changed
from its default value.

In addition, we tested whether there was unnecessary shap-
ing of traffic signals with bandwidth lower than the nominal
bandwidth of the emulated links. In order to do that, in the
delay-node-shaping configuration (Fig. 2(a)), we generated
traffic, gen(t), from node1 towards node2, and specifically a
5 Mbps CBR pulse followed by a sample of real traffic (taken
from the DATCAT repository [26]) injected with TCPReplay.
The traffic passes through delaynode0 and delaynode1 be-
fore reaching the sink node2. Fig. 8 shows the measured
packet/second in the source node in a period of around 3
minutes as well as the difference between the generated and
the received traffic signalrec(t). The results show that the
generated signal in node1 travels through the network keeping
its bursty nature and integrity; the small differences (less than
3%) are attributed to the artifacts of time correlation and
statistics gathering processes. In fact, if we calculate the sum
of all the values in this figure, we get 0, so all the packets are
traversing the network from node1 to node2.

C. Repeatability

Scientifically rigorous experimentation does not only mean
to get realistic performance, but being able to reproduce
results at any time, even by a different researcher with the
same tools and configuration. Therefore, we have carried out

8

0

100

200

300

400

500

600

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

4
2

0
Time (seconds)

P
a

c
k
e

ts
/s

e
c
o

n
d

(a) traffic signalgen(t) as generated in node1

-6

-4

-2

0

2

4

6

8

10

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

4
2

0

Time (seconds)

P
a

c
k
e

ts
/s

e
c
o

n
d

(b) difference between generated and received signal in node2gen(t)−
rec(t)

Fig. 8. Testing traffic signal propagation fidelity.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110

Sent traffic in node1 (Mbps)

R
e
c
e
iv

e
d
 t
ra

ff
ic

 i
n
 n

o
d
e
2
 (

M
b
p
s
)

(a) Different runs using fixed-hardware-allocation strategy.

0

5

10

15

20

25

30

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

Sent traffic in node1 (Mbps)

R
e

c
e

iv
e

d
 t

ra
ff

ic
 i
n

 n
o

d
e

2
 (

M
b

p
s
)

(b) Different runs using fixed-class-allocation strategy.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110

Sent traffic in node1 (Mbps)

R
e
c
e
iv

e
d
 t

ra
ff

ic
 i
n
 n

o
d
e
2
 (

M
b
p
s
)

(c) Different runs using free-hardware-allocation strategy.

0,00 1,00 2,00 3,00 4,00 5,00 6,00

1

5

10

20

30

40

50

60

70

80

90

100

CV %

B
a
n
d
w

id
th

 (
M

b
p
s
)

free-hardware-allocation

fixed-class-allocation

fixed-hardware-allocation

(d) Coefficient of variation for the tree scenarios of hardware allocation.

Fig. 9. Repeatability of network performance in three different strategies of hardware allocation.

9

appropriate tests to study the impact of hardware allocation
strategies, events generation system and traffic generatortools
to repeatability.

1) Hardware allocation strategies:As we have seen earlier
in Section III-B the quantitative results of an Emulab-based
experiment are hardware-dependent. On the other hand, the
hardware allocation might change from one experiment to
another due to (un)availability of resources, randomness in
Emulab’s swap-in algorithm [27] or other testbed policies.For
this reason, we have performed a set of experiments in order to
study the influence of hardware allocation on the repeatability
of an experiment in the delay-node-shaping configuration (Fig.
2(a)). We measured the network performance, i.e., the traffic
received by the sink node versus the traffic sent by the
source node, along repetitive experiments for three hardware-
allocation strategies:

1) the fixed-hardware-allocation strategy, where each ex-
perimental node is fixed to a specific PC;

2) the fixed-class-allocation strategy, where experimental
nodes are chosen from the class of Dell PCs;

3) thefree-hardware-allocation strategy, where experimen-
tal nodes are freely chosen from the two hardware
classes, i.e., Dell and Fujitsu PCs. This is the default
behavior in Emulab.

The following NS code creates three nodes: the first one
is allocated in a fixed PC, the second one in a PC belonging
to a specific class (dell), and the last one is freely allocated
(default configuration).
set node1 [$ns node]
tb-fix-node $node1 pc20

set node2 [$ns node]
tb-set-hardware $node2 dell

set node3 [$ns node]

In all experiments, we measured the sustained network
performance using Iperf’s built-in measurement functionality.
We generated UDP traffic from node1 to node2 with 512
bytes of payload and bandwidth ranging from 0Mbps up to
100Mbps. In the first experiment set we did not swap in and
out in order to preserve the exact hardware allocation (not even
a change in delay nodes1), while in the other two experiment
sets we swapped in and out for each experiment, leaving
Emulab to freely choose the hardware allocation according
to the predefined strategy.

For each experiment set, we run the same experiment 20
times and the results are depicted in Fig. 9(a), 9(b) and
9(c), while the statistics, averageµ, standard deviationσ
and coefficient of variation (CV = σ

µ
), are shown in Fig.

9(d). From the figures we can see that the 20 experiments in
each case provide the same performance when traffic is under
20Mbps, i.e., when there are no packet losses, the experiments
are accurately repeatable. However, when Dummynet is not
able to process all the packets and there are drops in the
queues, we see that the hardware allocation introduces a higher
variability in the results as we go from a fixed to a free
allocation strategy.

1The Emulab software does not allow the user to fix the hardware allocation
of delay nodes.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110

R
e
c
e
iv

e
d
 t

ra
ff
ic

 i
n
 n

o
d
e
2
 (

M
b
p
s
)

Sent traffic in node1 (Mbps)

Fig. 10. Different runs using free-hardware-allocation strategy in the DETER.

In fact, if we look at the CV, which in general gets worse as
the bandwidth grows, the best results in terms of repeatability
are with the fixed-hardware-allocation strategy and the worst
results with the free-hardware-allocation strategy. Another
important observation is that even in the worst case the CV
is under 5%, i.e., the maximum CV for the three allocation
strategies is 1.63%, 3.52% an 4.98% respectively.

2) Repeatability across testbeds:Finally, we have run the
same sets of experiments in DETER [7], which is an Emulab
based public facility, in order to test whether we can get similar
results using an equivalent testbed. For both fixed-hardware
and fixed-class allocation strategies, the results are of the same
order while in the third strategy, free-hardware-allocation, the
CV goes up to 14% with high network load (Fig. 10). The
reason behind this is that DETER is a larger testbed with
more than ten PC classes while our facility only consist of
two PC classes. Therefore, it is important to keep in mind
that there is a hardware dependency in the results, specially
when working in heterogeneous environments, that might lead
to non repeatable results.

Guideline 3: Emulab provides accurate repeatable
results in experiments with moderate network load
regardless of the hardware allocation strategy and the
platform. However, as the network load grows and
provokes packet drops, the fixed-hardware-allocation
strategy is the only way to get an acceptable level of
repeatability.

3) The events generation system:In this section we study
the accuracy of the events generation system in Emulab.
In order to do that, we have run the same experiment 20
times (swapping in and out) using the delay-node-shaping
configuration (Fig. 2(a)). In the NS script of the experiment
we scheduled four events to generate 2 pulses of CBR traffic
from node1 to node2 (see NS code below). Each pulse (events
A and C) had a duration of 5 seconds, and the time between
them (event B) was of 20 seconds (Fig. 11). The information
registered by Emulab about events generation in each experi-
ment is precise and consistent with the configuration.

10

set cbr12 [new Application/Traffic/CBR]
$cbr12 set interval_ 0.003
$cbr12 set packetSize_ 512

set udp12 [new Agent/UDP]
set udpsink12 [new Agent/Null]

$cbr12 attach-agent $udp12

$ns attach-agent $node1 $udp12
$ns attach-agent $node2 $udpsink12

$ns connect $udp12 $udpsink12

$ns at 10.0 "$link0 trace start"
$ns at 20.0 "$cbr34 start"
$ns at 25.0 "$cbr34 stop"
$ns at 45.0 "$cbr34 start"
$ns at 50.0 "$cbr34 stop"
$ns at 60.0 "$link0 trace stop"

We captured the traffic with TCPdump in delaynode0 and
we measured the time between the first and last packet of each
pulse for the 20 experiments. Table I shows the statistics ofthe
duration of events A, B and C along the 20 experiment runs.
The standard deviation is always below 63 milliseconds, which
should be precise enough for most experiments that schedule
events in seconds or tenths of seconds but not necessarily
for all experiments, e.g., in Industrial Networks the control
systems using SCADA protocols might be sensitive to delays
in the order of 10-100 milliseconds. In terms of CV, we see
that the accuracy is better with longer periods.

This variation can be explained by looking at what happens
after the events are scheduled by the system and before the
traffic is captured. The events imply starting or stopping an
application (CBR traffic generator) in a remote node, so there
is a communication between the Emulab system and node1.
Then, the traffic arriving to the delaynode0 has to pass through
network cards, switch and cables before it is captured. All
these processes, along with CPU scheduling inaccuracy, lead
to time shifting. The conclusion is though that Emulab’s events
generation system is accurate and consistent.

On the other hand, we ran the same experiment with
different load conditions inboss, the Emulab server in charge
of managing the experiments and the events system. We used
a script to stress boss, as if many users were responsible for
it. Fig. 12 shows the CPU load inboss during a set of 9
experiments that test the precision of events generation, going
from 0% up to 99%. The duration of events A, B and C are
always within twice the standard deviation shown in Table I
and without a particular trend as the CPU load increases.

Guideline 4: Emulab’s events generation system can
be safely used with a precision of tenths of seconds.

TABLE I
THE AVERAGE, STANDARD DEVIATION AND COEFFICIENT OF VARIATION

OF THE DURATION OF EVENTSA, B, C.

Event Avg (sec.) Stdev (sec.) CV (%)
A 4.94 0.03 0.55%
B 20.08 0.05 0.25%
C 4.86 0.06 1.30%

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time (seconds)

T
ra

ff
ic

 (
p

p
s
) 20 seconds5 seconds 5 seconds

(A) (B) (C)

Fig. 11. CBR traffic scheduled in the NS script to be sent in node1.

4) Traffic generators:In this part of the study, we have an-
alyzed the repeatability of different traffic generators, namely
Iperf, CBR, TCPReplay and TCPivo, by running each of them
10 times using the delay-node-shaping configuration (Fig.
2(a)). For Iperf and CBR we generated pulses of 30 seconds
with UDP packets of 512bytes of payload from node1 to
node2 (synthetic traffic), while for TCPReplay and TCPivo,
we reproduced a real trace of 30 seconds with TCP packets
of random length (taken from the DATCAT repository [26]).

TABLE II
REPEATABILITY OF TRAFFIC GENERATORS(TRAFFIC DURATION).

Tool Avg (sec.) Stdev (sec.) CV (%)
TCPReplay 48.45 3.27 6.74%

TCPivo 30.00 0.00 0.00%
CBR 30.07 0.02 0.05%
Iperf 30.00 0.00 0.00%

Fig. 13 shows the traffic measured with TCPdump in node2
for each of the traffic generators. At first sight, we see that
TCPReplay is not able to reproduce a single trace with the
same characteristics, each reproduction is different fromthe
other. On the other hand, the rest of the tools seem to generate
traffic in a repeatable way. In fact, if we look at Table II, the
duration of traffic is practically the same for all the tools but
TCPReplay, where the CV is higher than 6% and the standard
deviation is 3.27 seconds.

Furthermore, we subtracted the generated traffic signal that
was produced by TCPReplay and TCPivo as measured in
node2, i.e.,gen(t), from the original reference signal of the
trace file that we used as input for both tools, i.e.,ref(t). We
depict the differenceref(t)− gen(t) in Fig. 14. We see that
the differences are in the order of a few Kbps in the case of
TCPivo, but they increase up to 2Mbps with TCPReplay. A
small difference was expected due to the buffering mechanism
in the network, but TCPReplay was not able to provide
repeatable results.

11

1

2

3

4

5

6

7

8
9 Experiment CPU Boss (%)

 1 16

 2 29

 3 38

 4 47

 5 57

 6 70

 7 83

 8 94

 9 100

Fig. 12. CPU load inbossduring the event generation system evaluation.

0

1

2

3

4

5

6

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

T
ra

ff
ic

 (
M

b
p
s
)

Time (seconds)

(a) Iperf.

0

1

2

3

4

5

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

T
ra

ff
ic

 (
M

b
p

s
)

Time (seconds)

(b) CBR.

0

1

2

3

4

0
2
0

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0
1

6
0

1
8
0

2
0
0

2
2
0

2
4

0
2

6
0

2
8

0
3

0
0

3
2

0
3
4
0

3
6
0

3
8
0

4
0

0
4

2
0

4
4

0
4

6
0

4
8

0
5
0
0

5
2
0

5
4
0

5
6

0
5

8
0

T
ra

ff
ic

 (
M

b
p
s
)

Time (seconds)

(c) TCPReplay.

0

1

2

3

4

0

2
0

4
0

6
0

8
0

1
0

0

1
2
0

1
4
0

1
6
0

1
8
0

2
0

0

2
2
0

2
4
0

2
6

0

2
8
0

3
0
0

3
2

0

3
4
0

3
6
0

3
8

0

4
0
0

T
ra

ff
ic

 (
M

b
p
s
)

Time (seconds)

(d) TCPivo.

Fig. 13. Traffic generated by different tools and measured in the sink node.

Guideline 5: In order to quantitatively reproduce the
same experimental results the researcher is encour-
aged to use reliable traffic generators, e.g., TCPivo.

D. Measurement accuracy and interference

In this part of the study we aimed to validate the different
measurement tools we used in our experiments. Therefore
we ran a single experiment where we generated traffic with
Iperf from the source node1 to both sink nodes, node2 and
node3, using the delay-node-shaping configuration (Fig. 2(a)).
We gathered the traffic statistics provided by different tools
(Dummynet, Iperf, TCPdump) and compared them to the

measurements that were yielded by an external measurement
process, i.e., by spanning network traffic to a dedicated mea-
surement node, that acted as reference.

All tools, as well as the reference, provided exactly the same
information. This implies that they are valid measurement
tools and provide accurate information. However, as shown in
Table III, each of the tested tools has its pros and cons in terms
of provided information, scalability and processor consuming.
For example Spanning traffic provides precise and complete
information about every single packet in the network without
affecting at all an experiment, but its use is limited to the
switch limitations.

12

-3

-2

-1

0

1

2

3

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0
2

2
0

2
4

0
2

6
0

2
8

0
3

0
0

3
2

0
3

4
0

3
6

0
3

8
0

4
0

0
4

2
0

4
4

0
4

6
0

4
8

0
5

0
0

5
2

0
5

4
0

5
6

0
5

8
0

T
ra

ff
ic

 (
M

b
p
s
)

Time (seconds)

(a) ref(t)− gen(t) for TCPReplay

-30

-20

-10

0

10

20

30

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

3
0
0

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

T
ra

ff
ic

 (
K

b
p
s
)

Time (seconds)

(b) ref(t)− gen(t) for TCPivo

Fig. 14. Subtraction between traffic signals of the reference trace fileref(t) and the generated trafficgen(t) by TCPReplay and TCPivo.

TABLE III
ADVANTAGES AND DISADVANTAGES OF DIFFERENT MEASUREMENT

APPROACHES

Measurement tool Advantage Disadvantage
Dummynet Lightweight Only aggregate statistics
Iperf Lightweight Application specific, ag-

gregate statistics
TCPdump in delay-
node

Very detailed Heavy, might cause inter-
ference

Spanning traffic Very detailed, no inter-
ference

Not scalable (switch limi-
tations)

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

5 10 20 40 60 80

D
if
fe

re
n
c
e
 o

f
re

c
e
iv

e
d

 t
ra

ff
ic

 i
n
 n

o
d

e
2

(M

b
p

s
)

Sent traffic in node1 (Mbps)

64bytes

128bytes

256bytes

512bytes

768bytes

1024bytes

1280bytes

1480bytes

Fig. 15. Difference in the performance between experiments with & without
TCPdump.

Guideline 6: A researcher should be aware of the
different measurement approaches, that although ac-
curate, have significant advantages and disadvantages
(Table III).

On the other hand, it is well known that measuring any
parameter in a system may interfere and change its behavior
[28]. We have already seen that some results are hardware
dependent, so adding monitoring processes to the nodes, such
as TCPdump, can interfere with the system behavior.

In order to study whether this interference is significant
or not, we analyzed whether the network performance is
affected when TCPdump is running in the delay-nodes. We

ran multiple experiments, varying the packet size from 64
bytes up to 1408 bytes, and the generated bandwidth from
5Mbps up to 80Mbps of payload. For each combination and
for the two scenarios (with and without TCPdump running in
the delay-nodes) we ran 100 experiments. Fig. 15 depicts the
subtraction of the average network performances between the
two scenarios when traffic is sent toward node2 (100Mbps)
and for different packet sizes. Positive values mean better
performance when TCPdump is not running.

Apparently, the performance is better with smaller packet
sizes when TCPdump is not running, whilst for packet sizes
above 512bytes the difference fluctuates around 0. As we could
see in the repeatability experiments, part of the variability is
attributed to statistical variation. Therefore, a more complete
statistical analysis is needed to assess the measurement inter-
ference and to make clear whether there is an interference or
it is just a statistical variation. In order to do that, we usethe
Kolmogorov–Smirnov test (KS test) [29].

The KS test allows to compare two samples and to deter-
mine if they differ significantly. It uses the maximum vertical
deviation between the cumulative distribution functions (CDF)
of both samples:

max(|F1(x)− F2(x)|),

where F1(x) and F2(x) are the CDF of samples 1, and 2
respectively. The null hypothesis is that the samples are from
the same continuous distribution. The result of the test,h, is
1 if the test rejects the null hypothesis at the 5% significance
level, and is 0 otherwise.

In our case, we compared samples of network performance
with and without TCPdump running in the delay-nodes. Table
IV shows the result for the cases under study. The null
hypothesis is rejected with packets of 256 bytes and smaller
at any speed, and with larger packets (1280 and 1408 bytes)
at high speed (above 60Mbps of payload). On the other hand,
we can draw a diagonal, indicated with bold text in the table,
which corresponds to cases where there are few dropped
packets (1-10 drops/second). Here, the statistic analysismight
fail because the measured standard deviation of the samplesis
very high. We can identify an area with large packets and

13

TABLE IV
RESULT H OF THEK-S TEST WHILE COMPARING THE DROPPED PACKETS

IN THE SCENARIOS OF RUNNING AND NOT RUNNINGTCPDUMP IN DELAY

NODES

Packet size (bytes) 64 128 256 512 768 1024 1280 1408
5 Mbps 1 1 1 0 0 0 0 0
10 Mbps 1 1 1 0 0 0 0 0
20 Mbps 1 1 1 1 1 0 0 0
40 Mbps 1 1 1 0 0 1 1 1
60 Mbps 1 1 1 0 0 0 1 1
80 Mbps 1 1 1 0 0 0 1 1

low bandwidth where the hypothesis is not rejected. This
means that both samples come from the same distribution and
therefore differences in the network performance are minimal
and due to statistical reasons, not due to the interference of
TCPdump.

Finally, figure 16 shows a visual representation of the K-S
test by depicting the CDF of measured dropped packets (x)
when TCPdump is running (F2) and is not running (F1) in the
delay nodes for the particular case of 60Mbps and different
packet sizes. Once again, we see how the curves get distant
with the smaller packet sizes.

Guideline 7: In an experiment where even a small
percentage of packet loss increase is significant, traffic
monitoring in delay-nodes should be avoided with high
network load (20Mbps or higher) or small packets (256
bytes or smaller).

IV. CONCLUSION

Testing and evaluating the resilience of complex systems
and networks is a hard process. The limitations of software
simulators and the required cost and effort to setup and
maintain ad-hoc testbeds of real systems make the use of
emulation testbeds a promising approach. Emulation testbeds
like Emulab have been recently used for conducting security
and resilience research on IP networks. In this paper we
investigate several characteristics of an Emulab testbed that
are needed for conducting scientifically rigorous experiments,
and specifically experimental fidelity and repeatability aswell
as measurement accuracy and interference.

Our contribution can be summarized in the following points.
We confirm that the current trend of using emulation testbeds
is justified as both realistic and efficient. Nevertheless we
highlight the fact that the interpretation of experimentalresults
should not be based on absolute numbers (which are highly
hardware dependent) but rather on system behavior and trends,
except when using the same or very similar hardware. This
means that Emulab-based configurations are representativeof
real systems in terms of emerging behavior (qualitative) rather
than absolute performance (quantitative). Repeatabilitycan be
achieved and the platform allows the use of several accurate
and complementary measurement approaches. As a concluding
remark, we can state that Emulab-based testbeds, such as EPIC
and DETER, are promising scientific tools for the study of
security and resilience of ICT systems mainly because of their
system representativeness (fidelity) under extreme conditions

and failures but in addition due to their automation and their
ability to consistently reproduce experimental results. In this
context we formulate a set of guidelines that future Emulab
users should consider while designing their experiments or
analyzing their results.

Further work in the direction of evaluating Emulab as a tool
for emulating complex systems is needed, for example a study
of the artifacts introduced by the use of virtualization, aswell
as towards the improvement of the link emulation mechanisms,
e.g., by replacing Dummynet with a better alternative [30].

REFERENCES

[1] G. Huston, M. Rossi, and G. Armitage, “Securing BGP – a literature
survey,” Communications Surveys Tutorials, IEEE, vol. 13, no. 2, pp.
199–222, quarter 2011.

[2] B. Genge and C. Siaterlis, “Developing cyber-physical experimental
capabilities for the security analysis of the future Smart Grid,” in
Proceedings of the 2011 IEEE Innovative Smart Grid Technologies,
2011, pp. 1–7.

[3] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid – the new and
improved power grid: A survey,”Communications Surveys Tutorials,
IEEE, vol. PP, no. 99, pp. 1–37, 2011.

[4] Emulab, “Emulab bibliography,” http://www.emulab.net/expubs.php/,
2012, [Online; accessed March 2012].

[5] C. Siaterlis and M. Masera, “A survey of software tools for the creation
of networked testbeds,”International Journal On Advances in Security,
vol. 4, no. 1-2, pp. 1–12, 2010, ISSN. 1942-2636.

[6] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,”SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 255–270, Dec. 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844152

[7] DETER, “DETER. cyber-DEfense Technology Experimental Research
laboratory Testbed,” http://www.isi.edu/deter/, 2012, [Online; accessed
March 2012].

[8] J. Mirkovic, A. Hussain, S. Fahmy, P. Reiher, and R. Thomas,“Ac-
curately measuring denial of service in simulation and testbed exper-
iments,” Dependable and Secure Computing, IEEE Transactions on,
vol. 6, no. 2, pp. 81–95, april-june 2009.

[9] D. S. Anderson, M. Hibler, L. Stoller, T. Stack, and J. Lepreau,
“Automatic online validation of network configuration in theemulab
network testbed,” inProceedings of the 2006 IEEE International
Conference on Autonomic Computing, ser. ICAC ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 134–142. [Online].
Available: http://dx.doi.org/10.1109/ICAC.2006.1662391

[10] R. Chertov, S. Fahmy, and N. B. Shroff, “Fidelity of network simulation
and emulation: A case study of tcp-targeted denial of serviceattacks,”
ACM Trans. Model. Comput. Simul., vol. 19, no. 1, pp. 4:1–4:29, Jan.
2009. [Online]. Available: http://doi.acm.org/10.1145/1456645.1456649

[11] Emulab, “Emulab tutorial,” https://users.emulab.net/trac/emulab/wiki/
Tutorial, 2008, [Online; accessed March 2012].

[12] ——, “Emulab tutorial - a more advanced example,” https://users.
emulab.net/trac/emulab/wiki/AdvancedExample, 2010, [Online; ac-
cessed March 2012].

[13] B. Genge, I. N. Fovino, C. Siaterlis, and M. Masera, “Analyzing cyber-
physical attacks on networked industrial control systems,”in Critical
Infrastructure Protection, 2011, pp. 167–183.

[14] ISI, “The network simulator - ns-2,” http://www.isi.edu/nsnam/ns/, 2012,
[Online; accessed March 2012].

[15] Emulab, “Emulab - testbed ns command extensions,” http://users.emulab.
net/trac/emulab/wiki/nscommands, 2012, [Online; accessed March
2012].

[16] L. Rizzo, “Dummynet: a simple approach to the evaluation of
network protocols,”SIGCOMM Comput. Commun. Rev., vol. 27, no. 1,
pp. 31–41, Jan. 1997. [Online]. Available: http://doi.acm.org/10.1145/
251007.251012

[17] A. Garcia, C. Siaterlis, and M. Masera, “Testing the fidelity of an emulab
testbed,” inDistributed Computing Systems Workshops (ICDCSW), 2010
IEEE 30th International Conference on, june 2010, pp. 307–312.

[18] NLANR/DAST, “Iperf: The TCP/UDP bandwidth measurement tool,”
http://sourceforge.net/projects/iperf/, 2012, [Online; accessed March
2012].

14

Fig. 16. Cumulative distribution function of measured dropped packets (x) when TCPdump is running (F2) and is not running (F1) in the delay nodes.

[19] A. Turner, “TCPReplay tool,” http://tcpreplay.synfin.net/trac/, 2012, [On-
line; accessed March 2012].

[20] W. chang Feng, A. Goel, A. Bezzaz, W. chi Feng, and J. Walpole,
“Tcpivo: A high-performance packet replay engine,” inIn Proceedings
of the ACM SIGCOMM workshop on Models, methods, 2003, pp. 57–64.

[21] “Tcpdump: Traffic analyzer,” http://tcpreplay.synfin.net/trac/, 2012, [On-
line; accessed March 2012].

[22] CISCO, “Cisco switched port analyzer (SPAN),” http:
//www.cisco.com/en/US/products/hw/switches/ps708/products tech
note09186a008015c612.shtml, 2007, [Online; accessed March 2012].

[23] M. C. Weigle, P. Adurthi, F. Herńandez-Campos, K. Jeffay, and F. D.
Smith, “Tmix: a tool for generating realistic tcp applicationworkloads in
ns-2,”SIGCOMM Comput. Commun. Rev., vol. 36, no. 3, pp. 65–76, Jul.
2006. [Online]. Available: http://doi.acm.org/10.1145/1140086.1140094

[24] K. Vishwanath and A. Vahdat, “Swing: Realistic and responsive network
traffic generation,”Networking, IEEE/ACM Transactions on, vol. 17,
no. 3, pp. 712 –725, june 2009.

[25] M. Carbone and L. Rizzo, “Dummynet revisited,”SIGCOMM Comput.
Commun. Rev., vol. 40, no. 2, pp. 12–20, Apr. 2010. [Online].
Available: http://doi.acm.org/10.1145/1764873.1764876

[26] K. Cho, “WIDE-TRANSIT 150 Megabit Ethernet Trace 2008-03-18
(Anonymized) (collection),” http://imdc.datcat.org, 2012, [Online; ac-
cessed March 2012].

[27] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network
testbed mapping problem,”SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 2, pp. 65–81, Apr. 2003. [Online]. Available: http:
//doi.acm.org/10.1145/956981.956988

[28] Q. Jia, Z. Wang, and A. Stavrou, “The heisenberg measuring
uncertainty in lightweight virtualization testbeds,” inProceedings of
the 2nd conference on Cyber security experimentation and test, ser.
CSET’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 4–4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855481.1855485

[29] W. J. Conover,Practical Nonparametric Statistics. New York: John
Wiley & Sons, 1971, pp. 295–301;309–314.

[30] S. Agarwal, J. Sommers, and P. Barford, “Scalable network

path emulation,” in Proceedings of the 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, ser. MASCOTS ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 219–228. [Online]. Available:
http://dx.doi.org/10.1109/MASCOT.2005.61

Christos Siaterlis is an Electrical & Computer
Engineer and a project officer at the Joint Research
Centre of the European Commission. His research
interests include various aspects of the resilience,
stability and security of complex systems, and
specifically critical infrastructures like the Internet
and the Smart Grid. He has a PhD in the area
of Internet security management from the National
Technical University of Athens and a Master of
Science in Computer Science from the University
of Southern California, Los Angeles. Before joining

the European Commission he was working as a network engineer focusing
on network monitoring, traffic measurement and security in WANs.

15

Andres Perez Garcia is a Telecommunications
Engineer, specialty in telematics, from the University
of Seville, Spain. He has worked in the private
sector (banking and service providers) as a network
engineer. Currently he is a network security spe-
cialist at the Joint Research Center of the Euro-
pean Commission. His work focuses on inter-domain
routing protocols and security of critical networked
infrastructures.

Béla Gengereceived his BSc degree in Computer
Science in 2005 from the “Petru Maior” University
of Tı̂rgu Mureş, Romania and his PhD degree in
network security in 2009 from the Technical Uni-
versity of Cluj-Napoca, Romania. Currently, he is a
Post-Doctoral Researcher at the Institute for the Pro-
tection and Security of the Citizen, Joint Research
Centre of the European Commission, Ispra, Italy.
His research interests include critical infrastructure
protection, intrusion detection systems, security and
resilience of networked industrial control systems.

