
Constructing Security Protocol Specifications for Web
Services

Genge Bela, Haller Piroska, and Ovidiu Ratoi

“Petru Maior” University of Targu Mures, Electrical Engineering Department
Nicolae Iorga St., No. 1, Mures, RO-200440, Romania
�����������		�
��
�����������
�������
�

Summary. In order to integrate new security protocols, existing systems must be modified ac-
cordingly, which often means interrupting system activity. We propose a solution to this problem
by developing an ontology model which provides semantic to security protocol operations. The
proposed model is based on a formal specification model and is integrated in existing Web service
description technologies.

1 Introduction

Security protocols are widely used today to provide secure communication over inse-
cure environments. By examining the literature we come upon various security proto-
cols designed to provide solutions to specific problems ([10]). With this large amount of
protocols to chose from, distributed heterogenous systems must be prepared to handle
multiple security protocols.

Existing technologies, such as the Security Assertions Markup Language ([12]) (i.e.
SAML), WS-Trust ([15]) or WS-Federation ([14]) provide a unifying solution for the
authentication and authorization issues through the use of predefined protocols. By im-
plementing these protocols, Web services authenticate users and provide authorized
access to resources. However, despite the fact that existing solutions provide a way to
implement security claims, these approaches are rather static. This means that in case of
new security protocols, services supporting the mentioned security technologies must
be reprogrammed.

In this paper, we propose a more flexible solution to this problem by developing an
ontology model aiming at the automatic discovery and execution of security protocols.
An ontology is a “formal, explicit specification of a shared conceptualization” ([1]),
consisting of concepts, relations and restrictions. Ontologies are part of the semantic
Web technology, which associates semantic descriptions to Web services.

In order to construct the proposed ontology model, we first create an enriched formal
specification model for security protocols. In addition to the information provided by
existing formal models, such as the SPI calculus ([2]), the strand space model ([3]) or
the operational semantics ([4]), we also include explicit processing operations. These
operations are then translated to semantic concepts and properties in the proposed
ontology model.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 245–250, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008



246 G. Bela, H. Piroska, and O. Ratoi

The paper is structured as follows. In section 2 we construct a formal security proto-
col specification model. Based on this, in section 3 we describe the proposed ontology
model and an example implementation. In section 4 we connect our work to others. We
end with a conclusion and future work in section 5.

2 Security Protocol Specifications

Existing security protocol specifications limit themselves to the representation of oper-
ations and message components that are vital to the goal of these protocols: exchanging
messages in a secure manner. One of the most simplest form of specification is the in-
formal specification. For example, let us consider Lowe’s modified version of the BAN
concrete Andrew Secure RPC ([5]):

A � B: A� Na

B � A: �Na� K� B�KAB

A � B: �Na�K

B � A: Nb

By running the protocol, two participants, A and B, establish a fresh session key K.
The random number Na ensures freshness of the newly generated key, while Nb is sent
by participant B to be used in future sessions. Curly brackets denote symmetrical key
encryption. Throughout this paper we use the term “nonce”, which is a well-known
term in the literature, to denote random numbers.

Participants running security protocols usually exchange message components be-
longing to well-defined categories. We model these categories using the following sets:
R, denoting the set of participant names; N, denoting the set of nonces and K, denoting
the set of cryptographic keys.

The message components exchanged by participants are called terms. Terms may
contain other terms, encrypted or not. Encryption is modeled using function names.
The definition of function names and terms is the following:

FuncName ::�sk (secret key)
� pk (public key)
� h (hash or keyed hash)

� ::�. � R � N � K � (� �� )
� �� �FuncName(� )

Terms that have been encrypted with one key can only be decrypted by using either
the same key (when dealing with symmetric encryption) or the inverse key (when deal-
ing with asymmetric encryption). To determine the corresponding inverse key, we use
the �1 : K � K function.

As opposed to regular specifications where the user decides on the meaning of each
component, for our goal to be achievable, we need to include additional information in
the specification so that protocols can be executed without any user intervention.

We use the term “protocol header” to denote a set of sections needed for the inter-
pretation of the information that follows. The header we propose consists of three sec-
tions: types, precondition and e�ect. The predicates defined for each section are given in
table 1. Using the defined terms, we now define several functions to operate on them,



Constructing Security Protocol Specifications for Web Services 247

Table 1. Predicate definitions used to construct the protocol header

Section Predicate Definition Description

types part R� Participant list
nonce N� Nonce list
key K� Key list
term � � Term list

precondition shared key R � R � K Shared key between two participants
init part R Initializing participant
resp part R Respondent participant

e f f ect key exchange � � Key exchange protocol
authentication � � Authentication protocol

Table 2. Function definitions used to construct the protocol body

Function Definition Example Usage : Result

gennonce R � N gennonce(A) : Na

genkey R � K genkey(A) : K
encrypt R � � � � � � encrypt(A� (A� Na)� Kab) : �A� Na�sk(Kab)

decrypt R � � � � � � decrypt(A� �A� Na�sk(Kab)� K�1
ab ) : (A� Na)

resulting the “protocol body”. These functions are used to provide a detailed description
of atomic operations specific to term construction and extraction. Sending and receiving
operations are handled by send : R�R�� � � and recv : R�R�� � � functions.

The list of proposed functions is given in table 2, which can be extended with other
functions if needed.

3 Ontology Model and Semantic Annotations

Based on the formal protocol construction from the previous section we have devel-
oped an ontology model that serves as a common data model for describing semantic
operations corresponding to security protocol executions. The core ontology (figure 1)
defines a security protocol constructed from four domains: Cryptographic specifica-
tions, Communication, Term types and Knowledge. Interrupted lines denote ontology
import, empty arrowed lines denote sub-concept association and filled arrowed lines
denote functional relations (from domain to range) between concepts.

The proposed ontology has been developed in the Protégé ontology editor ([9]).
It provides semantic to protocol operations such as generating new terms (i.e. key or
nonce), verifying received terms, sending and receiving terms.

The knowledge concept plays a key role in the automatic execution process. It’s
purpose is to model the stored state of the protocol between exchanged messages. For
example, after generating a new nonce, this is stored in the knowledge of the executing



248 G. Bela, H. Piroska, and O. Ratoi

Fig. 1. Core ontology for describing security protocols

participant. When a term is received containing the same nonce, the participant must
verify it’s validity by comparing the stored value with the received one.

The ontology model provides semantic for the purpose of each sent and received
term. However, it does not provide description of the mechanisms that would allow
terms to be exchanged by parties. It also does not provide a specification of the precon-
ditions, e�ects, cryptographic details or exchanged message sequences.

In our implementations, we used WSDL with Semantic annotations ([11]) (i.e.
WSDL-S) to handle the aspects that are not addressed by the ontology model. The
WSDL standard defines the portType section to denote a collection of messages. We
annotate messages defined by portType using the wssem:modelReference extension
attribute. Part of an example annotated XML schema representation of an encrypted
message is the following:

��������	
�� ��������	
����

����������

�������� ���������� �
�����������	
���

���������������������������������������������������������� ����!��

����������

�������� ����������� �
������������	
���

���������������������������������������������������������� "����!�

����������

�������� �����#�
���� �
�������������$�
	
���

���������������������������������������������������������� $�
!%�

����������

�������� ��������!��� �
����������

���������������������������������������������������������� &��!&'�

����������

�����������

���������	
���

E�ects and preconditions are added using the already existing wssem:precondition
and wssem:e�ect elements. Part of the WSDL-S defining a security protocol which



Constructing Security Protocol Specifications for Web Services 249

requires a shared key between users and as an e�ect produces a session key is the
following:

����������	
�� �����&��(�����

������������������� �����'�����$�
�

���������������������������������������������������������� '�����$�
!%���

������������������� �����'������$�
�

���������������������������������������������������������� '���$�
!%���

�����������	
���

4 Related Work

There are several proposals and already established standards in the web service com-
munity dealing with security aspects. We will briefly describe three approaches that
have the most in common with our proposal: SAML (Security Assertion Markup
Language), WS-Federation (Web Service-Federation) and WS-Security (Web Service-
Security).

The Security Assertion Markup Language is an “XML framework for exchanging
authentication and authorization information” ([12]) between entities. This is achieved
by the use of assertions, based on XML constructions, that denote authentication and au-
thorization sequences achieved by entities. Based on these assertions, service providers
can decide whether clients are authorized or not to access the requested services. SAML
also provides a set of XML constructions called “profiles” to describe the required mes-
sage exchange for transferring assertions. However, these are predefined messages that
must be implemented by all services and protocol participants. Our proposal includes a
semantic description that allows executing security protocols containing message struc-
tures that are not predefined.

A similar proposal to the SAML framework is WS-Federation ([14]). As mentioned
by the authors of WS-Federation, the goals achieved are mainly the same as in the case
of SAML. Major di�erences relate to the fact that it extends the WS-Trust model ([15])
and it provides a set of composable protocols. These components that di�erentiate it
from the SAML framework, however, do not compete with our proposal.

The WS-Security ([13]) proposes a standard set of SOAP extensions to implement
message integrity and confidentiality. It describes how to encode binary security com-
ponents such as keys, random numbers or X.509 tokens. The WS-Services specification
is thus a transport layer for the actual execution of protocols and not the description of
the involved messages. The WS-Services could thus be used in conjunction with our
proposal to encode binary data included in protocol messages.

5 Conclusions and Future Research

In this paper we presented an ontology model which provides semantic to security
protocol execution operations. The ontology model is based on a formal specification
model that ensures a detailed description through the use of a protocol header and a
protocol body. Based on these descriptions, client applications can execute new secu-
rity protocols based only on the proposed description.



250 G. Bela, H. Piroska, and O. Ratoi

The major advances in the field of protocol composition ([7, 8]) provide the means to
create new protocols from existing security protocols. The analysis process of the com-
posed protocols has been reduced to a syntactical analysis ([6]) which could be used
to create protocols in real time. As future research we intend to combine the specifica-
tion and ontology model proposed in this paper with composition operators in order to
create protocols based on multiple specifications.

References

1. Studer, R., Benjamins, V., Fensel, D.: Knowledge Engineering: Principles and Methods. In:
Data and Knowledge Engineering, pp. 161–197 (1998)

2. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: the spicalculus. In: 4th
ACM Conference on Computer and Communications Security, pp. 36–47 (1997)

3. Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand Spaces: Why is a security protocol cor-
rect? In: Proc. Of the 1998 Symposium on Security and Privacy, pp. 66–77 (1998)

4. Cremers, C., Maw, S.: Operational semantics of security protocols. In: Leue, S., Systa, T.
(eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 66–89. Springer,
Heidelberg (2005)

5. Lowe, G.: Some new attacks upon security protocols. In: Proc. of the 8th Computer Security
Foundations Workshop (1996)

6. Genge, B., Ignat, I.: Verifying the Independence of Security Protocols. In: Proc. of the 3rd
International Conference on Intelligent Computer Communication and Processing, Romania,
pp. 155–163 (2007)

7. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol Composition Logic. In: Electronic
Notes in Theoretical Computer Science, pp. 311–358 (2007)

8. Hyun-Jin, C.: Security protocol design by composition. Technical report Nr. 657, UCAM-
CL-TR-657, Cambridge University, UK (2006)

9. Noy, N.F., Crubezy, M., et al.: Protege-2000: An Open-Source Ontology-Development and
Knowledge-Acquisition Environment. In: AMIA Annual Symposium Proceedings (2003)

10. Security Protocol Open Repository (2008), �����������	���������������
����
��
11. World Wide Web Consortium. Web Service Semantics WSDL-S Recommendation (Novem-

ber 2005), ���������������
��������	�
12. Organization for the Advancement of Structured Information Standards. SAML V2.0 OASIS

Standard Specification (November 2007), ����������	���	��
��
13. Organization for the Advancement of Structured Information Standards. OASIS Web Ser-

vices Security (WSS) TC (November 2006), ���������������
����������������
14. IBM. Web Services Federation Language Specification (December 2006),

����������������������	���
��
���	�
�
 �������������������

15. Organization for the Advancement of Structured Information Standards. WS-Trust v1.3
OASIS Standard (March 2007), �����������������������
������������
����

!""#$!�����
����$���������	�

http://www.lsv.ens-cachan.fr/spore/
http://www.w3.org/TR/wsdl/
http://saml.xml.org/
www.oasis-open.org/committees/wss/
http://www.ibm.com/developerworks/library/specification/ws-fed/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html/

	Introduction
	Security Protocol Specifications
	Ontology Model and Semantic Annotations
	Related Work
	Conclusions and Future Research
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


