
1

A Syntactic Approach for Identifying
Multi-Protocol Attacks

Béla Genge and Piroska Haller
“Petru Maior” University of Târgu Mureş

Electrical Engineering Department
N. Iorga St., No. 1, Tg. Mureş, Romania
{bgenge,phaller}@engineering.upm.ro

Abstract—In the context of multiple security protocols
running in the same environment, we propose a syntactical
approach for identifying multi-protocol attacks. The proposed
approach uses a canonical security protocol model, where terms
that can be verified by protocol participants are denoted by
canonical terms. In order to enable the identification of subtle
“type-flaw” attacks, where terms can be substituted with other
types of terms, we introduce a canonical identifier. The approach
is validated by analyzing several security protocol pairs. The
attacks discovered by our approach are also discovered by
existing security protocol verification tools.

Keywords: Security Protocols, Multi-Protocol Attacks.

I. INTRODUCTION

Security protocols are “communication protocols dedicated
to achieving security goals” (C.J.F. Cremers and S. Mauw) [1]
such as confidentiality, integrity or availability. Achieving such
security goals is made through the use of cryptography. The
explosive development of today’s Internet and the technolog-
ical advances made it possible to implement and use security
protocols in a wide range of applications such as sensor
networks, electronic commerce or routing environments.

Security protocols have been intensively analyzed through-
out the last few decades, resulting in a variety of dedicated
formal methods and tools [2], [3], [10]. The majority of these
methods consider a Dolev-Yao-like intruder model [5], [6] to
capture the actions available to a intruder which has complete
control over the network. By analyzing each individual proto-
col in the presence of this penetrator model, the literature has
reported numerous types of attacks [7], [3].

However, in practice, there can be multiple protocols run-
ning over the same network, thus the intruder is given new
opportunities to construct attacks by combining messages from
several protocols, also known as multi-protocol attacks [4].

In order to identify these attacks, in the literature we find
several approaches. For instance, in [8] Catherine Meadows
proposes a “zipper” (i.e. comparison) procedure for identifying
“type-flaw” attacks specific to multi-protocol environments.
“Type-flaw” attacks explore the lack of knowledge of protocol
participants because of which message components can be
substituted with others found in other protocols.

9781-4244-3941-6/09/$25.00 c©2009 IEEE

Other approaches, such as the one proposed by Guttman
[9], tackle with the “protocol independence” property. Ac-
cording to this, multiple protocols maintain their properties
when running in the same environment if they use a disjoint
encryption. In this approach, the user must identify similar
protocol messages based on a protocol specification provided
by the authors.

In the last decade, there have been several tools proposed to
enable the verification of the correctness of security protocols
running in isolation. However, only a few can be used to
verify the correctness of multiple protocols running in the
same environment. One of the most recent tools capable
to identify these attacks is the Scyther tool, proposed by
Cremers [10]. This tool was originally designed to prove
the correctness of security protocols running in isolation.
However, by concatenating multiple specifications it can be
used to verify the correctness of multiple protocols running in
the same environment. The tool uses a state-space exploration
approach with an implementation of the Dolev-Yao intruder
model. It can also be used to identify “type-flaw” attacks.

In this paper we propose a syntactical approach for iden-
tifying multi-protocol attacks. The advantages of using such
an approach are multiple. First, if specifications are provided
it can be fully automatized, without the need of human
intervention, which was the case of approaches proposed by
Meadows and Guttman. Second, implementations are much
faster than state-space exploration methods, such as the one
proposed by Cremers. These advantages make our approach a
candidate for an on-line automatic multi-protocol verification
tool that could be used in mobile ad-hoc networks, where
newly discovered services implementing new security proto-
cols must be automatically executed [16].

In order to introduce this method, we first present a protocol
model that includes information related to protocol precondi-
tions, effects, participant knowledge, and the sequence of sent
and received messages. Based on this protocol model, we de-
fine a canonical model that allows a syntactical analysis of the
modeled protocols by eliminating instance-based information
through the use of message component types. By doing so,
we syntactically model the knowledge of protocol participants,
used to identify and verify message components.

The method is validated by verifying the correctness of
several protocol pairs running in the same environment using
the widely-adopted security protocol verification tool Scyther

[10].
The paper is structured as follows. The proposed security

protocol and canonical models are constructed in section II.
In section III we define a predicate for identifying messages
that can be excepted from other protocols and we present our
experimental results. We end with a conclusion in section IV.

II. MODELING SECURITY PROTOCOLS

A. Protocol Model

Protocol participants communicate by exchanging terms
constructed from elements belonging to the following basic
sets: P, denoting the set of role names; N, denoting the set
of random numbers or nonces (i.e. “number once used”); K,
denoting the set of cryptographic keys; C, denoting the set of
certificates and M, denoting the set of user-defined message
components.

In order for the protocol model to capture the message
component types found in security protocol implementations
[11], [12] we specialize the basic sets with the following
subsets:
• PDN ⊆ P, denoting the set of distinguished names;

PUD ⊆ P, denoting the set of user-domain names;
PIP ⊆ P, denoting the set of user-ip names; PU =
{P \ {PDN ∪ PUD ∪ PIP }}, denoting the set of names
that do not belong to the previous subsets;

• NT , denoting the set of timestamps; NDH , denoting the
set of random numbers specific to the Diffie-Hellman key
exchange; NA = {N\{NDH ∪NT }}, denoting the set of
random numbers;

• KS ⊆ K, denoting the set of symmetric keys; KDH ⊆ K,
denoting the set of keys generated from a Diffie-Hellman
key exchange; KPUB ⊆ K, denoting the set of public
keys; KPRV ⊆ K, denoting the set of private keys;

To denote the encryption type used to create cryptographic
terms, we define the following function names:

FuncName ::= sk (symmetric function)
| pk (asymmetric function)
| h (hash function)
| hmac (keyed hash function)

The encryption and decryption process makes use of cryp-
tographic keys. Decrypting an encrypted term is only possible
if participants are in the possession of the decryption key
pair. In case of symmetric cryptography, the decryption key
is the same as the encryption key. In case of asymmetric
cryptography, there is a public-private key pair. Determin-
ing the corresponding key pair is done using the function
−1 : K→ K.
The above-defined basic sets and function names are used in

the definition of terms, where we also introduce constructors
for pairing and encryption:

T ::= . | R | N | K | C | M | (T,T) | {T}FuncName(T),

where the ‘.’ symbol is used to denote an empty term.
Having defined the terms exchanged by participants, we can

proceed with the definition of a node and a participant chain.

To capture the sending and receiving of terms, the definition
of nodes uses signed terms. The occurrence of a term with a
positive sign denotes transmission, while the occurrence of a
term with a negative sign denotes reception.

Definition 1. A node is any transmission or reception of a
term denoted as 〈σ, t〉, with t ∈ T and σ one of the symbols
+,−. A node is written as −t or +t. We use (±T) to denote
a set of nodes. Let n ∈ (±T), then we define the function
sign(n) to map the sign and the function term(n) to map the
term corresponding to a given node.

Definition 2. A participant chain is a sequence of nodes. We
use (±T)∗ to denote the set of finite sequences of nodes and
〈±t1,±t2, . . . ,±ti〉 to denote an element of (±T)∗.

In order to define a participant model we also need to define
the preconditions that must be met such that a participant is
able to execute a given protocol. In addition, we also need
to define the effects resulting from a participant executing a
protocol.

Preconditions and effects are defined using predicates ap-
plied on terms: CON TERM : T, denoting a term that must
be previously generated (preconditions) or it is generated (ef-
fects); CON PARTAUTH : T, denoting a participant that must
be previously authenticated (preconditions) or a participant
that is authenticated (effects); CON CONF : T, denoting
that a given term must be confidential (preconditions) or
it is kept confidential (effects); CON INTEG : T, denoting
that for a given term the integrity property must be pro-
vided (preconditions) or that the protocol ensures the integrity
property for the given term (effects); CON NONREP : T,
denoting that for a given term the non-repudiation property
must be provided (preconditions) or that the protocol ensures
the non-repudiation property for the given term (effects);
CON KEYEX : T, denoting that a key exchange protocol
must be executed before (preconditions) or that this protocol
provides a key exchange resulting the given term (effects).

The set of precondition-effect predicates is denoted by
PR CC and the set of precondition-effect predicate subsets is
denoted by PR CC∗. Next, we define predicates for each type
of term exchanged by protocol participants. These predicates
are based on the basic and specialized sets provided at the
beginning of this section. We use the TYPE DN : T predicate
to denote distinguished name terms, TYPE UD : T to denote
user-domain name terms, TY PE IP : T to denote user-ip
name terms, TYPE U : T user name terms, TYPE NT : T to
denote timestamp terms, TYPE NDH : T to denote Diffie-
Hellman random number terms, TYPE NA : T to denote other
random number terms, TYPE NDH : T × T × T × P × P
to denote Diffie-Hellman symmetric key terms
(term, number1, number2, participant1, participant2),
TYPE KSYM : T × P × P to denote symmetric key terms
(term, participant1, participant2), TYPE KPUB : T × P
to denote public key terms (term, participant),
TYPE KPRV : T × P to denote private key terms
(term, participant), TYPE CERT : T × P do denote
certificate terms (term, participant) and TYPE MSG : T to
denote user-defined terms.

The set of type predicates is denoted by PR TYPE and
the set of type predicate subsets is denoted by PR TYPE∗.
Based on the defined sets and predicates we are now ready to
define the participant and protocol models.

Definition 3. A participant model is a tuple
〈prec, eff, type, gen, part, chain〉, where prec ∈ PR CC∗

is a set of precondition predicates, eff ∈ PR CC∗ is a
set of effect predicates, type ∈ PR TYPE is a set of type
predicates, gen ∈ T∗ is a set of generated terms, part ∈ P
is a participant name and chain ∈ (±T)∗ is a participant
chain. We use the MPART symbol to denote the set of all
participant models.

Definition 4. A protocol model is a collection of participant
models such that for each positive node n1 there is exactly
one negative node n2 with term(n1) = term(n2). We use the
MPROT symbol to denote the set of all protocol models.

B. Canonical Protocol Model

In order to identify attacks, we construct a canonical model
that focuses on terms that can be verified by protocol par-
ticipants. For each term from the protocol model, defined in
the previous section, the canonical model provides a corre-
sponding syntactical representation through the use of basic
types. These denote the terms that can be verified by protocol
participants also including a representation for terms that can
not be verified because of limited participant knowledge. The
verification process makes use of these types to decide if
attacks can be constructed on each protocol model by using
terms extracted from the other considered protocol models.

The basic types we consider are based on the specialized
basic sets introduced in the protocol model:

BasicType ::=pDN | pUD | pIP | pU | nT |
nDH | nA | K | m | c | u,

where the given symbols correspond to participant distin-
guished names, user-domain names, user-ip names, other user
names, timestamps, Diffie-Hellman random numbers, other
random numbers, keys, user defined terms, certificates and
unknown terms, respectively.

In the encryption process of the same plaintext, the use of
two different keys, K1 and K2, will produce two different
ciphertexts. This is also true for the decryption process, where
the use of two different keys results in two different plaintexts.
Because of this, we consider that the type of the encrypted
terms after decryption will change too, according to the keys
that are used. Thus we use an indexed key type ki, such
that ki 6= kj , where i 6= j, to distinguish between key
types corresponding to different keys. In the definition of
BasicType, the set of all typed keys is denoted by K. We
define the −1 : K → K function to map the canonical key
pair corresponding to a given canonical key.

The unknown type u corresponds to terms that can not be
validated because of limited role knowledge. By including
this information in the specification we are able to detect
subtle type-flaw attacks using a syntactical comparison of
typed terms, that otherwise would require the construction of

a state-space that can become rather large if we consider the
existence of multiple protocols in the same system.

Based on the defined basic terms we can now proceed
with the definition of canonical terms that makes use of the
previously defined function names:

T ::= . | BasicType | (T , T) | {T }FuncName(T).

A canonical node is defined as a signed canonical term using
the following definition.

Definition 5. A canonical node is any transmission or recep-
tion of a canonical term denoted as 〈σ, t〉, with t ∈ T and
σ one of the symbols +,−. We use (±T) to denote a set of
canonical nodes. Let n ∈ (±T), then we define the function
csign(n) to map the sign and the function cterm(n) to map
the canonical term corresponding to a given canonical node.

Before we proceed with the definition of canonical chains
and canonical participant models we need to define classifiers.
These are attached to participant chains and are used to
transform canonical terms received from other participants
based on local participant knowledge. We define two such
classifiers:

Classifier ::= CLP | CLV .

The first classifier CLP denotes the processing chain corre-
sponding to a participant. This chain contains canonical terms
that correspond to participant knowledge. The second classifier
CLV denotes the virtual chain used to transform received
terms from the transmitted form to the received form based
on the knowledge of the receiving participant.

Definition 6. A canonical participant chain is a sequence of
canonical nodes. A classified canonical participant chain is a
pair 〈CL, lcc〉, where CL ∈ Classifier and lcc ∈ (±T)∗. We
use (±T)∗ to denote a set of canonical participant chains.

Definition 7. A canonical participant model is a pair
〈part, slcc〉, where part ∈ P is a participant name and
slcc ∈ (Classifier× (±T)∗)∗ is a set of classified canonical
participant chains. We use MPART-C to denote the set of all
canonical participant models.

Next, we define a canonical protocol model as a set of
canonical participant models.

Definition 8. A canonical protocol model is a collection
of canonical participant models such that for each positive
canonical node n1 there is exactly one negative canonical
node n2 with cterm(n1) = cterm(n2). We use the MPROT-C
symbol to denote the set of all canonical protocol models.

III. IDENTIFYING MULTI-PROTOCOL ATTACKS

A. Mathematical Constructions

Multi-protocol attacks are possible to create by intruders
if messages from protocols are accepted as valid in other
protocols.

In order to identify these attacks, we use the CONSTR
predicate that expresses the fact that a given canonical term can
be constructed by instantiation from another canonical term.

Informally, we consider that this construction is possible if
canonical terms from the same position are equal or that the
second term contains an undefined canonical term.

The CONSTR : T × T predicate is defined as:

CONSTR(t, t′) =

True, if t = t′ ∨ (t ∈ BasicType ∧ t′ = u)
∨(t = u ∧ t′ ∈ BasicType),

CONSTR(t1, t′1)∧ if (t = (t1, t2) ∧ t′ = (t′1, t
′
2))∨

CONSTR(t2, t′2), t = {t1}f(t2) ∧ t′ = {t′1}f(t′2)
∧

(t2 = t′2 ∨ t′2 = u),
False, otherwise.

B. Experimental Results

In order to validate our approach we used existing protocol
verification tools. The purpose of the verification was to de-
termine if new attacks become available when other protocols
are also present and if these attacks are also discovered by
our approach. One of the few tools allowing the verification
of multi-protocol attacks is Scyther [10], which is the only
tool currently available that also detects type-flaw attacks [13],
commonly found in multi-protocol environments.

We have applied our method to several pairs of security
protocols defined in the library maintained by Clark and Jacob
[14], for which there is also an online version available [15].
Through our experiments we have verified the correctness of
protocol pairs such as Yahalom-Lowe and Kao-Chow, Lowe-
Needham-Schroeder and ISO9798, Lowe-Denning-Sacco and
Lowe-Wide-Mouthed-Frog, Andrew-Secure-RPC and CCITT
X.509, Denning-Sacco and Otway-Reese.

By applying the CONSTR predicate we discovered several
new multi-protocol attacks. For example, in case of the pro-
tocol pair Yahalom-Lowe and Kao-Chow, a new attack was
discovered that gave the intruder the possibility to replay valid
messages from the Kao-Chow protocol in the Yahalom-Lowe
protocol. We have created a composed protocol and used the
Scyther tool to verify it. The result was that 2 new attacks
were possible. After correcting the problem, the Scyther tool
did not detect any attacks, which was also confirmed by our
method.

IV. CONCLUSION

We have developed a new method for the automated
identification of multi-protocol attacks. The novelty of our
approach is the fact that it provides a syntactical verification
of the involved protocols, that makes it appropriate for on-line
applications.

Our proposal makes use of an enriched protocol model
that embodies protocol preconditions and effects. Messages
exchanged by participants are modeled as sequences of nodes
called participant chains. Based on these, we constructed the
protocol model. In order to identify multi-protocol attacks we
constructed a canonical model that outlines the knowledge
available to protocol participants when running the protocols.
Using the constructed canonical terms, we are able to detect
message components that can be replaced by others, thus
allowing intruders to construct multi-protocol attacks.

TABLE I
PROTOCOL COMPOSITION RESULTS

Protocol 1 Protocol 2 Proposed Scyther
approach

Lowe-B ISO9798 No Attack No Attack
Lowe-B X509v1 No Attack No Attack
ISO9798 X509v1 No Attack No Attack
ISO9798 X509v1c No Attack No Attack
X509v1 X509v1c No Attack No Attack
X509v1 X509v1c No Attack No Attack
BAN-RPC Lowe-B Found Attack Found Attack
L-D-S K-Cv1 Found Attack Found Attack
K-Cv1 K-Cv2 No Attack No Attack
L-D-S Kerbv5 Found Attack Found Attack
Lowe-Kerb Neuman-S Found Attack Found Attack
H-N-S Neuman-S No Attack No Attack
Needh-S X509v1 No Attack No Attack
L-N-S ISO9798 No Attack No Attack
Otway-R Lowe-B No Attack No Attack
SPLICE Needh-S No Attack No Attack
TMN Andr-RPC No Attack No Attack
Y-L K-Cv1 Found Attack Found Attack

In order to validate our approach, we applied it on several
pairs of security protocols. The results have been confirmed
by using an existing well-established protocol verification tool:
Scyther. The advantage of using our proposal is that by using a
syntactical approach, analysis can be executed in real time, as
opposed to Scyther, which is based on a state-space exploration
method. As a disadvantage, we can note that our approach does
not identify the effects of the discovered attack. However, in
case protocols can not be modified, the decision on discovering
a multi-protocol attack can be to simply not execute the given
protocol, in which case the effects of the discovered attack is
of no relevance.

REFERENCES

[1] C. Cremers, S. Mauw, “Checking secrecy by means of partial order
reduction”, In S. Leue and T. Systa, editors, Germany, september 7-12,
2003, revised selected papers LNCS, Vol. 3466, 2005, Springer.

[2] F. J. T. Fabrega, J. C. Herzog, J. D. Guttman, 11Strand spaces: Proving
security protocols correct”, Journal of Computer Security, 7: 191–230,
1999.

[3] C. Weidenbach, 11Towards an automatic analysis of security protocols”,
Lecture Notes in Artificial Intelligence 1632: 378–382, 1999.

[4] Cas J. F. Cremers, 11Compositionality of Security Protocols: A Research
Agenda”, Electr. Notes Theor. Comput. Sci., 142, pp. 99–110, 2006.

[5] D. Dolev, A.C. Yao, “On the security of public key protocols”, IEEE
Transactions on Information Theory, 29: 198–208, 1983.

[6] I. Cervesato, “The Dolev-Yao Intruder is the Most Powerful Attacker”,
16th Annual Symposium on Logic in Computer Science, LICS’01, IEEE
Computer Society Press, Boston, MA, 2001.

[7] Gavin Lowe, “Some new attacks upon security protocols”, In Proceedings
of the 9th Computer Security Foundations Workshop, IEEE Computer
Society Press, 1996, pp. 162–169.

[8] C. Meadows, “A Procedure for Verifying Security Against Type Confu-
sion Attacks”, In the Proc. of the 16th CSFW, 2003, p. 62.

[9] J.D. Guttman, F.J.T. Fabrega, “Protocol Independence through Disjoint
Encryption”, In the Proc. of the 13th CSFW, 2000, pp. 24–34.

[10] C.J.F. Cremers, “Scyther”, Semantics and Verification of Security Pro-
tocols, Thesis, University Press Eindhoven, 2006.

[11] SAML V2.0 OASIS Standard Specification, Organization for the
Advancement of Structured Information Standards, http://saml.xml.org/,
2007.

[12] OASIS Web Services Security (WSS), Organization for the Advancement
of Structured Information Standards, http://saml.xml.org/, 2006.

[13] J. Heather, G. Lowe, S. Schneider, “How to Prevent Type Flaw Attacks
on Security Protocols”, In the Proc. of the 13th Computer Security
Foundations Workshop, IEEE Computer Society Press, July 2000.

[14] J. Clark, J. Jacob, “A Survey of Authentication Protocol Literature:
Version 1.0”, York University, 17 November 1997.

[15] Laboratoire Specification et Verification, Security Protocol Open Repos-
itory, http:// www.lsv.ens-cachan.fr/spore/, 2008.

[16] Genge Bela, Haller Piroska, “Middleware for Automated Implementa-
tion of Security Protocols”, 6th European Semantic Web Conference,
Heraklion, Greece, 31 May - 4 June, Lecture Notes in Computer Science
(LNCS 5554), L. Aroyo et al. (Eds.), Springer-Verlag, pp. 476-490, 2009.

