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Abstract—We propose a memory and CPU usage prediction
model for application-layer multicast networks. The predicted
values are used in the distribution of end-hosts to overlay-
hosts. Such a distribution enables us to limit the maximum
resource consumption for a given node, leading to an efficient
utilization of overlay-hosts and, finally, to an increased overall
performance of the system. The model parameters are deter-
mined using training sets gathered from measuring resource
consumption while distributing end-hosts to overlay-hosts. Both
end-hosts and overlay-hosts are running on PlanetLab nodes,
a testbed that provides researchers a real environment where
nodes can become unreachable, network bandwidth can fluc-
tuate and node processing capabilities can drop dramatically.
Using the determined parameters, we show that our proposal
can be used to estimate memory and CPU usage and to
efficiently distribute end-hosts to overlay-hosts.
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I. INTRODUCTION

Because of technical and administrative issues that IP
multicast networks had to deal with in the past [1], they have
been replaced by application-layer multicast [2] networks.
The popularity of application-layer multicast (i.e. ALM)
comes from its ease of implementation over the already
existing and well-established Internet protocols that require
little or no modifications in existing routers. One of the main
applications of ALM is in the field of group communication.

For several years now group communications have been
receiving significant attention from both the industry and
scientific communities [3], [4]. The main goal of group
communication is to enable the exchange of information
between group members that can be located across the entire
globe. Historically speaking, the first multicast applications
were implemented over the IP layer, also known as IP
multicast [5]. However, after nearly a decade of research in
the field of IP multicast, it was never fully adopted because
of several technical and administrative issues [1].

Later, there have been several proposals for other multi-
cast implementations that would be easier to deploy over the
already existing and well-established Internet protocols and
would require little or no modifications in existing routers.
Such a survey of existing solutions was provided by El-
Sayed et al [2].

One of the directions that has been clearly adopted over
the last few years is ALM, which implements the multicast
functionality at the application layer. The main goal of
ALM is to construct and maintain efficient distribution
structures between end-hosts (i.e. EHs). These structures
are constructed using an overlay network providing the
necessary infrastructure for data transfer between end-hosts.
The overlay must ensure a scalable and reliable group
communication in a dynamic environment where end-hosts
can join and leave sessions at will.

Existing research on ALM focuses on constructing the
overlay network using the closest node principle [6], [7],
[8], head of structure principle [9], [10], [11] or simply
using a random distribution [12]. Their main goal is to
provide an overlay structure that optimizes a given set of
criteria. However, as shown in our previous work [13],
data transfer between EHs using the constructed overlay
is also affected by the distribution of EHs to overlay-
hosts (i.e. OHs). Data transfer is thus affected by network
latency that must be measured and used as a reference by
a central distribution node, called monitoring-host (i.e. MH)
to efficiently distribute EHs.

In our previous work [13] we have used the measured
latency between each EH-OH pair for an efficient EH
distribution. However, we have not considered other key
factors such as memory or CPU usage that can affect, over
time, the overall performance of sessions. In this paper we
use a model predictive approach for estimating memory
and CPU usage in the distribution of EHs. By doing so,
we can limit the number of distributed EHs to each OH
based not only on a maximum EH count but based on the
consumed resources. In order to validate our proposal we
use PlanetLab [14], a testbed that provides researchers a real
environment where nodes can become unreachable, network
bandwidth can fluctuate and node processing capabilities can
drop dramatically.

The paper is structured as follows. In Section II we pro-
vide a brief overview of the overlay topology. Our proposed
predictive model is described in Section III. In Section IV
we provide an evaluation of our proposal. We end with a
conclusion and future work in Section V.



II. OVERLAY TOPOLOGY AND DISTRIBUTION
ALGORITHMS

The considered overlay topology is shown in Fig. 1, where
we have illustrated the presence of 3 host types:
• End-hosts (i.e. EH);
• Overlay-hosts (i.e. OH);
• Monitor-hosts (i.e. MH ).
The complete graph model has several advantages over

hierarchical ones. First, there is no need for implementing
complex routing algorithms [15], which greatly simplifies
the implementation and functionality of the overlay. Second,
maintaining routing tables is not more complex than main-
taining connections with all the other nodes. As a downside
of this topology, there is a large number of connections that
must be maintained, which grows exponentially with the
number of OHs. However, the simplicity of the routing algo-
rithms between OHs makes this topology a great candidate
for using it as a leaf component in hierarchical topologies
[16], [17].

Figure 1. Multicast topology

EHs are the producers and consumers of data transferred
by the overlay. MHs are used to monitor the load of each
OH (e.g. memory and CPU usage) and to distribute EHs
to the least loaded OH. We identify two types of EHs:
measuring EHs and streaming EHs. Measuring EHs denote
EHs that connect to OHs in order to measure network
latency. These measurements are then sent to the MH that
runs the distribution algorithm presented in our previous
work [13]. The MH then sends back the selected OH to
which EHs connect and request resources. Through this last
step, EHs become streaming EHs.

In this paper we provide a predictive model for resource
allocation. The implementation of this model is used in the
process of distributing EHs to OHs based on resource usage
criteria. This way we are able ensure an efficient utilization

of OHs and, finally, to an increased overall performance of
the system.

As mentioned before, the role of the MH is to distribute
EHs to OHs. The algorithm we used in our previous work
to distribute EHs relies on connection latencies measured by
EHs to each OH (i.e. Alg. 1). These are then sent to the MH
that chooses an OH such that the overall graph latency has
a local optimal value. We use a local optimal value instead
of a global one because from our simulation results this
approach runs in the order of milliseconds, while the global
optimal algorithm runs in the order of minutes for several
thousand EHs and several hundred OHs.

Algorithm 1 EH distribution algorithm - current version
Let Req be the set of OH - measured latency pairs (oh, l)
Let ChosenOH be the set of chosen OHs
Let ehOH = OH1 be the OH chosen for this EH
Let lmin = MAX VAL be the minimal computed latency

{Search for the OH that minimizes the overall graph
latency}
for all (oh, l) ∈ Req do

Let l = Latency(ChosenOH ∪ {oh})
if l < lmin then
ehOH = oh
lmin = l

end if
end for

{Save the chosen OH for next EH distributions}
ChosenOH = ChosenOH ∪ {ehOH}

Alg. 1 does not consider previously distributed EHs.
This can lead to overloaded OHs and to an overloaded
overlay that can significantly affect the performance of group
communications. The chosen OH (i.e. ChosenOH ) for each
EH must be selected in such a manner that we also take into
consideration previous distributions that can later require
more memory and CPU, also affecting the round-trip latency.

Alg. 2 is an improved version of Alg. 1 because it also
considers memory and CPU usage of selected OHs in the
distribution process. It additionally uses the totally ordered
set (Min,≤) to store in an ordered manner the OHs that
have been found on the way to the minimal latency graph.
The elements of Min are pairs of OH and latency values,
ordered by the value of the computed latency. Let Mini =<
eh, l >, with Mini ∈Min. Then Min1

i = eh and Min2
i =

l.
The algorithm starts by storing all < eh, l > pairs to

the Min set. These represent the possible OHs to which
the EH could be distributed. However, instead of choosing
the OH with the minimal latency value, as in case of Alg.
1, we continue with searching an OH that provides the



Algorithm 2 EH distribution algorithm - improved version
Let Req be the set of OH - measured latency pairs (oh, l)
Let ChosenOH be the set of chosen OHs
Let ehOH = OH1 be the OH chosen for this EH
Let lmin = MAXV AL be the minimal computed latency
Let (Min,≤) be a totally ordered set of minimum latency
OHs
Let found = 0 be a flag denoting that we have found a
proper OH

{Search and store the OHs that minimize the overall graph
latency}
for all (oh, l) ∈ Req do

Let l = Latency(ChosenOH ∪ {oh})
if l < lmin then
Min = Min ∪ {< OH, l >}
lmin = l

end if
end for

{Search for the OH that also has a minimum MEM and
CPU usage}
for i = 1, |Min| do

if PredMEM (Min1
i ) < MAXMEM then

if PredCPU (Min1
i ) < MAXCPU then

ehOH = oh
found = 1
@EndFor

end if
end if

end for

{In case we could not find a proper OH (with low MEM
and CPU usage), assign the OH with minimal latency}
if found = 0 then
ehOH = Min1

1

end if

{Save the chosen OH for next EH distributions}
ChosenOH = ChosenOH ∪ {ehOH}

smallest latency value and the lowest memory and CPU
usage. We use the PredMEM and PredCPU functions to
denote the prediction of memory and CPU usage in case of
an additional EH and the MAXMEM and MAXCPU values
as constants to denote the maximum allowed memory and
CPU usage.

The flag found is used to signal if there was an OH
found that satisfies the mentioned conditions. If no such OH
is found, the EH is distributed to the OH that provided the
minimal latency value.

In this section we have simply provided an improved
distribution algorithm that also takes into consideration the
predicted memory and CPU usage. Throughout the next
sections we continue with constructing the prediction models
and evaluating them on several PlanetLab nodes.

III. PREDICTIVE MODEL

In order to predict memory and CPU usage for a single
OH based on the number of connected EHs, we start from
the following general MIMO (i.e. Multiple Input Multiple
Output) model:

mem(t+ 1) = a1mem(t) + b1meh(t) + c1seh(t),
cpu(t+ 1) = a2cpu(t) + b2meh(t) + c2seh(t), (1)

where meh(t) is the measuring EH count and seh(t) is the
streaming EH count. The model parameters are determined
by minimizing the sum of the squared errors. More formally,
we minimize the functions:

J(a1, b1, c1) =
N∑
t=1

(mem′(t+ 1)−mem(t+ 1)),

J(a2, b2, c2) =
N∑
t=1

(cpu′(t+ 1)− cpu(t+ 1)), (2)

were mem′(t + 1) and cpu′(t + 1) denote the measured
values with a number of measured values of N + 1.

In order to quantify the predicted values for a given
number of streaming EHs, this model is parameterized:

Pαmem(t) = a1mem(t) + b1meh(t) + c1(seh(t) + α),
Pαcpu(t) = a2cpu(t) + b2meh(t) + c2(seh(t) + α), (3)

where α denotes the number of additional streaming EHs.
By using this model, when the MH receives α requests
after update t, it calculates the predicted values based on
the previously reported ones with an additional α number
of streaming EHs. However, there can be several requests
received between t and t+ 1, each one requiring a new set
of resources to be allocated. The total number of requests
between t and t + 1 is denoted by βt. For each new
request we also consider previous requests after the last
update, resulting the following quantified predicted values
after update t:

Qmem(t) =
βt∑
i=1

(Pαi
mem(t)−mem(t)) +mem(t),

Qcpu(t) =
βt∑
i=1

(Pαi
cpu(t)− cpu(t)) + cpu(t). (4)

When estimating resource allocation such as memory and
CPU, we must also take into consideration that the allocation
is done sometime in the future. This means that for the
following several updates received from the OH, EHs do
not have any resources allocated yet. However, we must



consider that some resources will be allocated in the future,
but we also must consider that EHs can decide simply not
to connect to the designated OH, which translates simply to
resources not being allocated. This means that we must use
an exponential forgetting factor λmem and λcpu for older
predicted values. The current estimated resource allocation
for memory and CPU is calculated using the following set
of equations:

Cmem(t) = mem(t) +
t−1∑
k=1

λt−kmem∆Qmem(k),

Ccpu(t) = cpu(t) +
t−1∑
k=1

λt−kcpu∆Qcpu(k), (5)

where ∆Qmem(k) and ∆Qcpu(k) denote the difference
between predicted and current values, such that:

∆Qmem(k) = Qmem(k)−mem(k),
∆Qcpu(k) = Qcpu(k)− cpu(k), (6)

with ∆Qmem(k) = ∆Qcpu(k) = 0 for k ≤ 0. In control
theory, the values of λmem and λcpu are usually chosen
between 0.95 and 0.999 [18].

In real implementations the value of memory and CPU
usage can not grow above certain values (e.g. 100%).
We incorporate this into our model using δmem and δcpu,
denoting the maximum possible values for memory and CPU
usage, respectively. The real predicted memory and CPU
usage are denoted, respectively, by Rmem and Rcpu, defined
as follows:

Rmem(t) =
{
Cmem(t), if Cmem(t) < δmem,
δmem, otherwise.

Rcpu(t) =
{
Ccpu(t), if Ccpu(t) < δcpu,
δcpu, otherwise.

(7)

IV. MODEL EVALUATION

Because of its global deployment, nodes from PlanetLab
have a heterogeneous hardware setup and a homogeneous
software setup. Each node is running a Fedora Core-based
Linux with multiple virtual servers that host user pro-
grams. Because of the heterogeneity of the hardware, in
order to evaluate the proposed model, model parameters
a1, b1, c1, a2, b2, c2 must be determined for each OH. In this
section we present the model evaluation for a single OH,
which can be used as a reference for evaluating it on other
OHs. In our setup, each OH transmits frames (i.e. JPEG
encoded images) of variable size (i.e. between 10000 and
20000 bytes) to each connected streaming EH with a frame-
rate of 5 frames/second. Frames are received from another
OH that provides the JPEG encoding of the images.

The calculated parameters are given in Table I. By using
these values we can predict the next memory and CPU
usage, as shown in Fig. 2.

Table I
MODEL PARAMETERS

a1 b1 c1 a2 b2 c2

0.99999 0.00012 0.00004 0.72439 0.27876 0.01106

The predicted values are calculated by the MH for values
received from a single OH using mem(t+1) and cpu(t+1)
as defined in equation 1. The update count denotes the
number of updates received from the OH. Based on the
previous values (i.e. mem(t), cpu(t) and meh(t)) and the
current streaming EH count (i.e. seh(t)), we calculate the
predicted mem(t+ 1) and cpu(t+ 1) shown in Fig. 2.

Figure 2. Prediction of next memory and CPU usage

We calculate the medium percentage error using the
following equations:

errmem =

∑N−1
t=1

|mem′(t+1)−mem(t+1)|∗100
mem′(t+1)

N − 1
,

errcpu =

∑N−1
t=1

|cpu′(t+1)−cpu(t+1)|∗100
cpu′(t+1)

N − 1
. (8)

For the predicted memory usage we get errmem =
0.02537% and for the predicted CPU usage we get errcpu =
21.035%. This notable difference between errmem and
errcpu is due to the oscillation of measured CPU values.

As we can see from Fig. 2, the model given in equation
1 can predict the next memory and CPU usage, but it can
not predict the effect of current requests on future resource
usage. This is because it does not take into consideration
previous EH requests. This model is extended with knowl-
edge on previous EH requests in equations 5 and 7. The
prediction becomes more realistic, taking into consideration
not only the current requests, but previous requests and their
effect on memory and CPU usage.



The predicted values for the later enriched model are
shown in Fig. 3. These correspond to Rmem(t + 1) and
Rcpu(t + 1) and are calculated for a single OH. Requests
are sent by EHs to the MH that predicts the future memory
and CPU usage. In practice αi = 1 (from equation 1)
because each request is received independently from others,
and the value of βt (from the same equation) equals the
number of requests between two updates. Thus, in this case
max(βt) = 4, where t = 1, 400, with a total number of 400
updates. Because the memory and CPU usage are expressed
in percentage δmem = δcpu = 100 (from equation 7).

Figure 3. Prediction of future memory and CPU usage for different λmem,
λcpu values and EH request count

In Fig. 3 we can also see the changes in prediction for
different λmem and λcpu values. In order to determine the
best value for λmem we use an empirical approach. As
shown in the same figure, EH requests between updates 33
and 71 have an effect on memory usage only after update
100. A value for λmem = 0.95 leads to a rapid phasing out
of previous predictions, while a value for λmem = 0.9996
leads to a greater impact of previous predictions. A much
more reasonable prediction results for λmem = 0.993. The
same procedure is used to determine the value of λcpu.
Thus, we estimate that a value of 0.95 for λcpu would be
appropriate for predicting CPU usage.

V. CONCLUSION AND FUTURE WORK

We proposed a model for predicting memory and CPU
usage in ALM environments. The prediction model uses
memory and CPU reports, measuring and streaming EH
count to generate the next predicted values. However, using
only these elements is not enough for a correct estimation
of resource consumption. This is why we also use previous
prediction values multiplied with a forgetting factor. By
doing so, the time required for EHs to connect to OHs and
to be allocated all the necessary resources is also taken into
consideration.

Our proposal allows us to predict memory and CPU
usage for each new EH. Implementations must previously
determine model parameters based on a measured training
set for each OH. However, we consider that an adaptive
approach - where model parameters are determined at run-
time for each OH and are continuously calculated - would
be more appropriate for larger overlays. As future work
we intend to extend the model proposed in this paper
with an adaptive component that automatically calculates
both model parameters and the values of λmem and λcpu.
Also, we intend to expand on the set of monitored and
predicted resource allocations and use a weighted function
for automatically distributing EHs to OHs.
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