
Automated Composition of Security Protocols

Genge Béla
“Petru Maior” University of Târgu Mureş

Electrical Engineering Department
N. Iorga St., No. 1, Tg. Mureş, Romania

bgenge@engineering.upm.ro

Iosif Ignat
Technical University of Cluj-Napoca

Computer Science Department
Gh. Baritiu St., No. 28, Cluj-Napoca, Romania

Iosif.Ignat@cs.utcluj.ro

Haller Piroska
“Petru Maior” University of Târgu Mureş

Electrical Engineering Department
N. Iorga St., No. 1, Tg. Mureş, Romania

phaller@engineering.upm.ro

Abstract

Determining if two protocols can be securely composed
requires analyzing not only their additive properties but
also their destructive properties. In this paper we propose
a new composition method for constructing protocols based
on existing ones found in the literature that can be fully au-
tomatized. The additive properties of the composed proto-
cols are ensured by the composition of protocol precondi-
tions and effects, denoting, respectively, the conditions that
must hold for protocols to be executed and the conditions
that hold after executing the protocols. The non-destructive
property of the final composed protocol is verified by ana-
lyzing the independence of the involved protocols, a method
proposed by the authors in their previous work. The fully
automatized property is ensured by constructing a rich pro-
tocol model that contains explicit description of protocol
preconditions, effects, generated terms and exchanged mes-
sages. The proposed method is validated by composing 17
protocol pairs and by verifying the correctness of the com-
posed protocols with an existing tool.

1 Introduction

Security protocols are “communication protocols dedi-
cated to achieving security goals” (C.J.F. Cremers and S.
Mauw) [1] such as confidentiality, integrity or availability.
Achieving such security goals is made through the use of
cryptography. The explosive development of today’s In-
ternet and the technological advances made it possible to
implement and use security protocols in a wide range of ap-

plications such as sensor networks, electronic commerce or
routing environments.

Security protocols have been intensively analyzed
throughout the last few decades, resulting in a variety of
dedicated formal methods and tools [2, 3, 4]. The majority
of these methods consider a Dolev-Yao-like intruder model
[5, 6] to capture the actions available to the intruder that has
complete control over the network. By analyzing each indi-
vidual protocol in the presence of this intruder, the literature
has reported numerous types of attacks [3, 7]. However, in
practice, there can be multiple protocols running over the
same network, thus the intruder is given new opportunities
to construct attacks by combining messages from several
protocols, also known as multi-protocol attacks [8].

Designing new protocols, thus, becomes a challenging
task if we look at the number of attacks that have been dis-
covered over the years [7] after the protocols have been pub-
lished. In the last few years the use of protocol composition
[8, 9, 10] has been successfully applied to create new proto-
cols based on existing [11, 12, 13] or predefined protocols
[9].

In this paper we propose a new composition method that,
as opposed to existing approaches [9, 11, 12, 13, 14] can be
fully automatized by eliminating the human factor. In order
to create an automated composition method, we need an en-
riched protocol model that contains enough information to
compose the protocol preconditions and effects and an ap-
proach for the verification of the correctness of the final,
composed protocol.

Preconditions denote the set of properties that must be
satisfied for the protocol to be executed, while the effects
denote the set of properties resulting from the protocol ex-
ecution. By composing preconditions and effects (i.e. PE

composition), we generate a new protocol sequence that en-
sures the satisfaction of the protocol preconditions and the
propagation of generated information through effects.

The protocol sequence generated by the PE composition
must be correct, in the sense that it must maintain the secu-
rity properties of the original protocols. In order to verify
this, we use an approach developed in our previous work
[15] that verifies the independence of the involved proto-
cols. Protocol independence, called participant chain com-
position (i.e. PC composition) ensures that the intruder can
not replay messages from one protocol to another to con-
struct new attacks while running the protocols in the same
environment. This property also ensures the correctness of
the composed protocol.

The paper is structured as follows. In section 2 we define
an enriched protocol model that includes explicit descrip-
tion of protocol preconditions, effects, generated terms and
exchanged messages. In section 3 we provide a description
of the proposed composition method and a brief presenta-
tion of the independence verification method proposed in
our previous work [15]. The proposed composition method
has been applied in the composition process of several pro-
tocols, part of these experimental results are given in sec-
tion 4. We relate our work to others found in the literature
in section 5 and we end with a conclusion and future work
in section 6.

2 Protocol model

Protocol participants communicate by exchanging terms
constructed from elements belonging to the following ba-
sic sets: P, denoting the set of participant names; N, de-
noting the set of random numbers or nonces (i.e. “number
once used”); K, denoting the set of cryptographic keys; C,
denoting the set of certificates and M, denoting the set of
user-defined message components.

In order for the protocol model to capture the message
component types found in security protocol implementa-
tions [17, 18] we specialize the basic sets with the following
subsets:

• PDN ⊆ P, denoting the set of distinguished names;
PUD ⊆ P, denoting the set of user-domain names;
PIP ⊆ P, denoting the set of user-ip names; PU =
{P\{PDN ∪PUD∪PIP }}, denoting the set of names
that do not belong to the previous subsets;

• NT , denoting the set of timestamps; NDH , denot-
ing the set of random numbers specific to the Diffie-
Hellman key exchange; NA = {N \ {NDH ∪ NT }},
denoting the set of random numbers;

• KS ⊆ K, denoting the set of symmetric keys; KDH ⊆
K, denoting the set of keys generated from a Diffie-
Hellman key exchange; KPUB ⊆ K, denoting the set

of public keys; KPRV ⊆ K, denoting the set of private
keys.

To denote the encryption type used to create crypto-
graphic terms, we define the following function names:

FuncName ::= sk (symmetric function)
| pk (asymmetric function)
| h (hash function)
| hmac (keyed hash function)

The encryption and decryption process makes use of
cryptographic keys. Decrypting an encrypted term is only
possible if participants are in the possession of the decryp-
tion key pair. In case of symmetric cryptography, the de-
cryption key is the same as the encryption key. In case of
asymmetric cryptography, there is a public-private key pair.
Determining the corresponding key pair is done using the
function −1 : K→ K.

The above-defined basic sets and function names are
used in the definition of terms, where we also introduce con-
structors for pairing and encryption:

T ::= . | P | N | K | C | M | (T,T) | {T}FuncName(T),

where the ‘.’ symbol is used to denote an empty term.
Having defined the terms exchanged by participants, we

can proceed with the definition of a node and a participant
chain. To capture the sending and receiving of terms, the
definition of nodes uses signed terms. The occurrence of
a term with a positive sign denotes transmission, while the
occurrence of a term with a negative sign denotes reception.

Definition 1. A node is any transmission or reception of a
term denoted as 〈σ, t〉, with t ∈ T and σ one of the symbols
+,−. A node is written as−t or +t. We use (±T) to denote
a set of nodes. Let n ∈ (±T), then we define the function
sign(n) to map the sign and the function term(n) to map
the term corresponding to a given node.

Definition 2. A participant chain is a sequence of nodes.
We use (±T)∗ to denote the set of finite sequences of nodes
and 〈±t1,±t2, . . . ,±ti〉 to denote an element of (±T)∗.

In order to define a participant model we also need to
define the preconditions that must be met such that a par-
ticipant is able to execute a given protocol. In addition, we
also need to define the effects resulting from a participant
executing a protocol.

Preconditions and effects are defined using predicates
applied on terms: CON TERM : T, denoting a term that
must be previously generated (preconditions) or it is gener-
ated (effects); CON PARTAUTH : T, denoting a participant
that must be previously authenticated (preconditions) or a
participant that is authenticated (effects); CON CONF : T,

denoting that a given term must be confidential (precon-
ditions) or it is kept confidential (effects); CON INTEG :
T, denoting that for a given term the integrity property
must be provided (preconditions) or that the protocol en-
sures the integrity property for the given term (effects);
CON NONREP : T, denoting that for a given term the non-
repudiation property must be provided (preconditions) or
that the protocol ensures the non-repudiation property for
the given term (effects); CON KEYEX : T, denoting that a
key exchange protocol must be executed before (precondi-
tions) or that this protocol provides a key exchange resulting
the given term (effects).

The set of precondition-effect predicates is denoted by
PR CC and the set of precondition-effect predicate sub-
sets is denoted by PR CC∗. Next, we define predi-
cates for each type of term exchanged by protocol partic-
ipants. These predicates are based on the basic and spe-
cialized sets provided at the beginning of this section. We
use the TYPE DN : T predicate to denote distinguished
name terms, TYPE UD : T to denote user-domain name
terms, TY PE IP : T to denote user-ip name terms,
TYPE U : T user name terms, TYPE NT : T to de-
note timestamp terms, TYPE NDH : T to denote Diffie-
Hellman random number terms, TYPE NA : T to de-
note other random number terms, TYPE NDH : T × T ×
T × P × P to denote Diffie-Hellman symmetric key terms
(term, number1, number2, participant1, participant2),
TYPE KSYM : T × P × P to denote symmetric key
terms (term, participant1, participant2), TYPE KPUB :
T × P to denote public key terms (term, participant),
TYPE KPRV : T × P to denote private key terms
(term, participant), TYPE CERT : T × P do denote cer-
tificate terms (term, participant) and TYPE MSG : T to
denote user-defined terms.

The set of type predicates is denoted by PR TYPE and
the set of type predicate subsets is denoted by PR TYPE∗.
Based on the defined sets and predicates we are now ready
to define the participant and protocol models.

Definition 3. A participant model is a tuple
〈prec, eff , type, gen, part, chain〉, where prec ∈ PR CC∗

is a set of precondition predicates, eff ∈ PR CC∗ is a
set of effect predicates, type ∈ PR TYPE is a set of type
predicates, gen ∈ T∗ is a set of generated terms, part ∈ P
is a participant name and chain ∈ (±T)∗ is a participant
chain. We use the MPART symbol to denote the set of all
participant models.

Definition 4. A protocol model is a collection of participant
models such that for each positive node n1 there is exactly
one negative node n2 with term(n1) = term(n2). We use
the MPROT symbol to denote the set of all protocol models.

3 Composition of protocol models

The composition process involves composing in a first
stage the protocol preconditions and effects followed by the
composition of participant chains. In this section we first
formulate the conditions needed for the precondition-effect
(PE) composition which involves establishing the satisfac-
tion of protocol preconditions and the verification of the
non-destructive properties of protocol effects. This is fol-
lowed by the protocol-chain (PC) composition for which we
construct a canonical model and verify the independence of
the involved participant chains.

3.1 Composition of preconditions and ef-
fects

In the composition process of two security protocols we
first need to compose the preconditions and effects. In other
words, we need to establish if the knowledge needed by pro-
tocol participants to run a given protocol, expressed through
the form of precondition predicates, is available and if the
set of precondition and effect predicates is non-destructive.

In order to establish if the set of preconditions corre-
sponding to a protocol can be satisfied based on a given con-
text and the effects corresponding to another protocol we
use the predicate PART PREC : T∗×PR CC∗×PR CC∗.
The context denotes the initial knowledge available to par-
ticipants when running the protocol. For two participant
models, ς1 = 〈prec1, eff 1, type1, gen1, part1, chain1〉
and ς2 = 〈prec2, eff 2, type2, gen2, part2, chain2〉, the
PART PREC predicate is defined as

PART PREC(ctx, eff 1, prec2) = True, if eff1 ⊆ prec2∪ ,
{∪{CON TERM(t)|t ∈ ctx}} ,

False, otherwise .

The non-destructive property applies only for the
CON CONF because the absence of another property, such
as integrity or non-repudiation, does not affect the previ-
ous properties. In order to establish if the preconditions
and effects of two participant models are destructive we use
the predicate PART NONDESTR : PR CC∗ × PR CC∗ ×
PR CC∗ which holds only if all confidential terms from one
participant model maintain their confidentiality property in
the second participant model also. Thus, the predicate is
defined as

PART NONDESTR(eff 1, prec2, eff 2) =
True, if EF1 6= CON CONF∨

if EF1 = CON CONF ∧ t1 = t2 then
∃EF2(t2) : EF2 = CON CONF,

∀EF1(t1) ∈ eff1 ∧ ∀PR2(t2) ∈ prec2,
False, otherwise.

Based on the above given predicates we can state that in
order to compose the preconditions and effects correspond-
ing to two participant models we need to establish if the
predicates PART PREC and PART NONDESTR hold. The
precondition-effect (PE) composition is expressed through
the use of the operator ≺PEς : MPART × MPART →
MPART, which generates a new participant model based
on two given participant models. By using this operator, we
not only express the PE composition of participant models
but also the order in which the given participant models ap-
pear in the final, composed participant model. Thus, we can
state that given two participant models, ς1 and ς2, for which
the PE composition requirements are satisfied, we have that
ς1 ≺PEς ς2 6= ς2 ≺PEς ς1. If the operator is applied on two
participant models that can not be composed (i.e. one of the
two predicates does not hold), the result is the empty partic-
ipant model, denoted by φς = 〈φ, phi, φ, φ, ., 〈〉〉, where φ
denotes an empty set.

The PE composition requirements of two participant
models can be easily extended to form the requirements for
the PE composition of two protocol models. These require-
ments include applying the ≺PEς operator on pairs of
participant models for which the names are equal. We ex-
press the PE composition of two protocol models through
the use of the ≺PEξ : MPROT ×MPROT → MPROT
operator. For this operator also, we can state that given
two protocol models, ξ1 and ξ2, for which the PE composi-
tion requirements are satisfied, we have that ξ1 ≺PEξ ξ2 6=
ξ2 ≺PEξ ξ1. In case of protocol models that can not be com-
posed, the result is denoted by the empty protocol model
φξ = φ.

3.2 Composition of participant chains

The PC composition makes use of a canonical model
that focuses on terms that can be verified by protocol par-
ticipants. For each term the canonical model provides a
corresponding syntactical representation through the use of
basic types. These denote the terms that can be verified
by protocol participants also including a representation for
terms that can not be verified because of limited participant
knowledge. The verification process makes use of these
types to decide if attacks can be constructed on each pro-
tocol model by using terms extracted from the other consid-
ered protocol models.

In order to compose two participant chains these must be
instance independent and canonical independent. The first
condition refers to the non-destructive properties of precon-
ditions and effects while the second condition refers to ver-
ifying the independence of the involved participant chains
based on the canonical model. The verification of the in-
dependence property of protocol models has been covered
by the authors in their previous work [15]. If protocols

are independent, then they maintain their security properties
when they are run in the same context. By using this prop-
erty in the composition process, protocols maintain their se-
curity properties, resulting new protocols with accumulated
properties.

In the remaining of this section we briefly present the
canonical model and the protocol independence property
proposed in our previous work.

The basic types we consider are based on the specialized
basic sets introduced in the protocol model:

BasicType ::= pDN | pUD | pIP | pU | nT | nDH
| nA | K | m | c | u,

where the given symbols correspond to participant distin-
guished names, user-domain names, user-ip names, other
user names, timestamps, Diffie-Hellman random numbers,
other random numbers, keys, user defined terms, certificates
and unknown terms, respectively.

The unknown type u corresponds to terms that can not
be validated because of limited participant knowledge. By
including this information in the specification we are able to
detect subtle type-flaw attacks using a syntactical compar-
ison of typed terms, that otherwise would require the con-
struction of a state-space that can become rather large if we
consider the existence of multiple protocols in the same sys-
tem [16].

Based on the defined basic terms we can now proceed
with the definition of canonical terms:

T ::= . | BasicType | (T , T) | {T }FuncName(T).

A canonical node is defined as a signed canonical term
using the following definition.

Definition 5. A canonical node is any transmission or re-
ception of a canonical term denoted by 〈σ, t〉, with t ∈ T
and σ one of the symbols +,−. We use (±T) to denote a set
of canonical nodes. Let n ∈ (±T), then we define the func-
tion csign(n) to map the sign and the function cterm(n) to
map the canonical term corresponding to a given canonical
node.

Before we proceed with the definition of canonical
chains and canonical participant models we need to define
classifiers. These are attached to participant chains and are
used to transform canonical terms received from other par-
ticipants based on local participant knowledge. We define
two such classifiers:

Classifier ::= CLP | CLV .

The first classifier CLP denotes the processing chain
corresponding to a participant. This chain contains canon-
ical terms that correspond to participant knowledge. The
second classifier CLV denotes the virtual chain used to

transform received terms from the transmitted form to the
received form based on the knowledge of the receiving par-
ticipant.

Definition 6. A canonical participant chain is a sequence
of canonical nodes. A classified canonical participant chain
is a pair 〈CL, lcc〉, where CL ∈ Classifier and lcc ∈
(±T)∗. We use (±T)∗ to denote a set of canonical partici-
pant chains.

Definition 7. A canonical participant model is a pair
〈part, slcc〉, where part ∈ P is a participant name and
slcc ∈ (Classifier× (±T)∗)∗ is a set of classified canon-
ical participant chains. We use MPART-C to denote the set
of all canonical participant models.

Next, we define a canonical protocol model as a set of
canonical participant models.

Definition 8. A canonical protocol model is a collection
of canonical participant models such that for each posi-
tive canonical node n1 there is exactly one negative canon-
ical node n2 with cterm(n1) = cterm(n2). We use the
MPROT-C symbol to denote the set of all canonical proto-
col models.

Based on the described protocol and canonical models,
we proved, through the form of a proposition, that if two
protocol models are instance independent and their corre-
sponding canonical models are canonical independent, then
the intruder can not construct attacks using terms extracted
from other protocols. In order to verify this we used an
intruder model based on the Dolev-Yao [5, 6] model to cap-
ture the powers that can be used by an intruder.

If two protocol models are independent, then their par-
ticipant chains can be composed. We use the ≺PCς :
MPART × MPART → MPART operator to denote the
PC composition of protocol chains and the ≺PCξ :
MPROT × MPROT → MPROT operator to denote the
PC composition of protocol models. For the first operator
we use φς to denote the empty participant model, while for
the second operator we use φξ to denote the empty protocol
model.

If two protocol models can be composed PE and PC, then
they can be composed. The composition operator we use
to denote the composition of protocol models is ≺C :
MPROT ×MPROT → MPROT, for which the generated
empty protocol model is denoted by φξ.

By sequentially composing several protocol models the
resulting protocol model provides a unified set of precondi-
tions and effects and a unified set of participant chains. By
composing i protocols, the resulting sequence is written as
ξ1 ≺C ξ2 ≺C . . . ≺C ξi.

3.3 Composition algorithm

The proposed composition method can be applied on
protocol pairs or entire protocol sequences. Let SEQ1 and
SEQ2 be two protocol sequences, where each sequence
is constructed by subsequently applying the ≺C op-
erator on protocol pairs, and n, m, two symbols denoting
the number of protocols in the first and in the second se-
quence, respectively. Then, the composition algorithm must
ensure that the new composed sequence maintains the secu-
rity properties of the original protocols and that the knowl-
edge available to protocol participants allows the execution
of the new sequence. Verifying if protocols from the two

Algorithm 1 Composition steps
{Verification of non-destructive properties}
for all ξ1 ∈ SEQ1 and ξ2 ∈ SEQ2 do

for all ς1 ∈ ξ1 and ς2 ∈ ξ2 do
Let ς1 = 〈prec1, eff 1, type1, gen1, part1, chain1〉,

ς2 = 〈prec2, eff 2, type2, gen2, part2, chain2〉,
c1 = PART NONDESTR(eff 1, prec2, eff 2),
c2 = PART NONDESTR(eff 2, prec1, eff 1)

if c1 = False ∨ c2 = False ∨ ς1 ≺PCς ς2 = φς
then

@InterruptExecution
end if

end for
end for
{Composition of protocol sequences}
Let i = 1, j = 1
Let ξ = {〈φ,PRINIT,TINIT, φ, ., φ〉}
while i ≤ n ∧ j ≤ m do

Let ξi be the i-th element of SEQ1

Let ξj be the j-th element of SEQ2

if ξ ≺Cξ ξi 6= φξ then
ξ = ξi ≺Cξ ξ, i = i+ 1

else if ξi ≺Cξ ξ 6= φξ then
ξ = ξ ≺Cξ ξi, i = i+ 1

end if
if ξ ≺Cξ ξj 6= φξ then
ξ = ξj ≺Cξ ξ, j = j + 1

else if ξj ≺Cξ ξ 6= φξ then
ξ = ξ ≺Cξ ξj , j = j + 1

end if
end while
{Add remaining protocols}
while i ≤ n do
ξ = ξ ≺Cξ ξi, i = i+ 1

end while
while j ≤ m do
ξ = ξ ≺Cξ ξj , j = j + 1

end while

sequences maintain their security properties requires apply-
ing the PART NONDESTR predicate on each protocol pair
and the verification of the independence of the participant
chains by using the PC composition operator ≺PCς . As
shown in Algorithm 1, if one of these conditions is not
satisfied, the execution is stopped, symbolized using the
@InterruptExecution keyword.

If the protocol properties are not destructive, the execu-
tion of the composition algorithm continues with the com-
position of protocol components. The final protocol is de-
noted by ξ, which, initially, contains a participant model
with the effects PRINIT and types TINIT . These denote the
initial knowledge for protocol participants, extracted from
the context ctx, a unified context constructed from the con-
texts corresponding the the two sequences.

The composition process locates the position of each
protocol in the final sequence by using the composition op-
erator ≺Cς . If the result is φς , the protocols can not be
composed and another pair is selected. Finally, the remain-
ing protocols are added to the sequence.

4 Experimental results

In order to validate the proposed method we generated
several new composed protocols, based on existing ones. In
order to verify if the new protocols accumulated the prop-
erties of the initial protocols, i.e. the composition is non-
destructive, we applied the method proposed in this paper.
However, such a verification is not enough for validating a
method that must ensure the correctness of the resulted pro-
tocols, as shown by the large number of attacks discovered
on protocols long after they have been published [3, 7].

Having these in mind, we turned to existing protocol ver-
ification tools. The purpose of the verification was to de-
termine if new attacks became available on the composed
protocols. One of the few tools allowing the verification
of multi-protocol attacks is Scyther [4], which is the only
tool currently available that also detects type-flaw attacks
[19, 20], commonly found in multi-protocol environments.

We have applied our method on several pairs of secu-
rity protocols defined in the library maintained by Clark
and Jacob [21], for which there is also an online version
available [22]. Through our experiments we composed pro-
tocol pairs such as CCITT X.509 v1 (i.e. X509v1) and
CCITT X.509 v1c (i.e. X509v1c), BAN Concrete RPC (i.e.
BAN-RPC) and Lowe-B (i.e. Lowe-BAN), Lowe-Denning-
Sacco (i.e. L-D-S) and Kao-Chow v1 (i.e. K-Cv1), Lowe-
Kerberos (i.e. Lowe-Kerb) and Neuman-Stubblebine (i.e.
Neuman-S), Hwang-Neuman-Stubblebine (i.e. H-N-S) and
Neuman-Stubblebine, Needham-Schroeder (i.e. Needh-S)
and CCITT X.509 v1, Lowe-Needham-Schroeder (i.e. L-
N-S) and ISO9798, Otway-Rees (i.e. Otway-R) and Lowe-
BAN, Yahalom-Lowe (i.e. Y-L) and Kao-Chow v1, as

Table 1. Protocol composition results
Protocol 1 Protocol 2 PE PC Scyther

(S1/S2) (S1/S2)
Lowe-B ISO9798 N/Y Y/Y Y/Y
Lowe-B X509v1 N/N Y/Y Y/Y
ISO9798 X509v1 Y/Y Y/Y Y/Y
ISO9798 X509v1c Y/Y Y/Y Y/Y
X509v1 X509v1c Y/Y Y/Y Y/Y
X509v1 X509v1c Y/Y Y/Y Y/Y
BAN-RPC Lowe-B Y/Y N/N N/N
L-D-S K-Cv1 Y/Y N/N N/N
K-Cv1 K-Cv2 Y/Y Y/Y Y/Y
L-D-S Kerbv5 Y/Y N/N N/N
Lowe-Kerb Neuman-S Y/Y N/N N/N
H-N-S Neuman-S Y/Y Y/Y Y/Y
Needh-S X509v1 Y/N Y/Y Y/Y
L-N-S ISO9798 Y/N Y/Y Y/Y
Otway-R Lowe-B Y/N Y/Y Y/Y
SPLICE Needh-S Y/Y Y/Y Y/Y
TMN Andr-RPC Y/N Y/Y Y/Y
Y-L K-Cv1 Y/Y N/N N/N

shown in Table 1. The non-destructive property of the com-
posed protocol was validated using the Scyther tool.

In Table 1, S1 indicates the protocol composition se-
quence P1-P2, while S2 indicates the sequence P2-P1. We
used “Y” to indicate the successful composition of a se-
quence and “N” the failure of the composition process. By
applying the proposed non-destructivity conditions we have
discovered several new multi-protocol attacks. For exam-
ple, in case of the protocol pair Yahalom-Lowe and Kao-
Chow, we discovered a new attack that gives the intruder
the possibility to replay valid messages from the Kao-Chow
v1 (i.e. K-Cv1) protocol into the Yahalom-Lowe (i.e. Y-L)
protocol. We have created a composed protocol and used
the Scyther tool to verify it. The result was that 2 new at-
tacks were possible. After correcting the problem by adding
additional terms to the protocols messages in order for par-
ticipants to be able to verify the validity of these messages,
the Scyther tool did not detect any attacks, which was also
confirmed by our method.

5 Related work

In this section we briefly describe the approaches found
in literature that mostly relate to our proposal.

In [14], Guttman proposes a composition method based
on predefined protocol primitives that are used to construct
new, composed protocols. A similar approach is proposed
by Choi [9], that additionally defines bindings in order to
correctly connect different primitives. The previously men-

tioned approaches have not been designed to compose ex-
isting protocols, as the one proposed in this paper. We have
only mentioned them here for completeness.

A. Datta et all [11, 12] propose the description of each
composed protocol and of the final protocol as a set of equa-
tions. The composition process starts out from the initial
protocol equations and tries to reach the properties modeled
by the final equations. By doing so, they also prove the
correctness of the final protocol. In case of this approach,
the human factor plays an important role. As opposed to
this, our approach can be fully automatized, eliminating the
interference of the human factor.

The approach proposed by S. Andova et all [13] also
uses equations written for each protocol and for each se-
curity property that must be satisfied by the final proto-
col. The composition process uses the human operator
to construct the final properties from the initial equations
and the Scyther [4] tool to automatically verify the correct-
ness of the composed protocols. This approach is a semi-
automatized one that uses the human operator to construct
the final properties and an automatic verification tool for the
verification of the correctness of the final protocol.

6 Conclusion and future work

We have developed a method for the composition of se-
curity protocols. The novelty of our approach is the fact that
it provides a syntactical verification of the involved proto-
cols, that makes it appropriate for on-line automated com-
position applications.

Our proposal makes use of an enriched protocol model
that embodies protocol preconditions and effects. Mes-
sages exchanged by participants are modeled as sequences
of nodes called participant chains. Based on this model we
proposed conditions for the precondition-effect composi-
tion. This process involves determining if sufficient knowl-
edge is provided by previous protocols and if instance-
specific security properties are maintained even after the
composition.

The protocol-chain composition process makes use of
a canonical model that eliminates message component in-
stances. This model reduces each component of the proto-
col model to its basic type. By doing so we are able to verify
the instance-independent components of security protocols
and detect multi-protocol attacks in a syntactical manner.

We have applied the proposed composition method on
several pairs of well-known security protocols and have
found new multi-protocol attacks. Our independence veri-
fication method has been validated using the security pro-
tocol verification tool Scyther, a state-space exploration
method, by discovering the same multi-protocol attacks.

As future work, we intend to use the proposed composi-
tion method in the design process of new protocols for Web

services. This would allow us to implement more complex
protocols, such as TLS [23], currently used as a binary se-
curity protocol, using an XML message format that would
enrich the properties of TLS with the ones specific to Web
services such as extensibility or flexibility.

References
[1] C.J.F. Cremers, and S. Mauw, “Checking secrecy by means

of partial order reduction”, In S. Leue and T. Systa, edi-
tors, Germany, september 7-12, 2003, revised selected pa-
pers LNCS, Vol. 3466, 2005.

[2] F.J.T. Fabrega, J.C. Herzog, and J.D. Guttman, “Strand
spaces: Proving security protocols correct”, Journal of Com-
puter Security, 1999, Vol. 7, pp. 191–230.

[3] C. Weidenbach, Towards an automatic analysis of security
protocols, Lecture Notes in Artificial Intelligence Vol. 1632,
1999, pp. 378–382.

[4] C.J.F. Cremers, “Scyther”, Semantics and Verification of Se-
curity Protocols, Thesis, University Press Eindhoven, 2006.

[5] D. Dolev, and A.C. Yao, “On the security of public key pro-
tocols”, IEEE Transactions on Information Theory, Vol. 29,
1983, pp. 198–208.

[6] I. Cervesato, “The Dolev-Yao Intruder is the Most Powerful
Attacker”, 16th Annual Symposium on Logic in Computer
Science, LICS’01, IEEE Computer Society Press, Boston,
MA, 2001.

[7] Gavin Lowe, “Some new attacks upon security protocols”,
In Proceedings of the 9th Computer Security Foundations
Workshop, IEEE Computer Society Press, 1996, pp. 162–
169.

[8] C.J.F. Cremers, “Compositionality of Security Protocols: A
Research Agenda”, Electr. Notes Theor. Comput. Sci., Vol.
142, 2006, pp. 99–110.

[9] H.J. Choi, “Security protocol design by composition”, Cam-
bridge University, UK, Technical report Nr. 657, UCAM-
CL-TR-657, ISSN 1476-2986, 2006.

[10] Ran Canetti, “Universally composable security: A
new paradigm for cryptographic protocols”, 42nd
FOCS, 2001, Revised version (2005), available at
eprint.iacr.org/2000/067.

[11] A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic, “Se-
cure Protocol Composition”, Proceedings of the 2003 ACM
workshop on Formal methods in security engineering, 2003,
pp. 11–23.

[12] A. Datta, A. Derek, J.C. Mitchell, and A. Roy, “Protocol
Composition Logic (PCL)”, Electronic Notes in Theoretical
Computer Science, Vol. 172, 1 April, 2007, pp. 311–358.

[13] S. Andova, C.J.F. Cremers, K. Gjosteen, S. Mauw, S. Mjol-
snes, S. Radomirovic, “A framework for compositional veri-
fication of security protocols”, Special issue on computer se-
curity: Foundations and Automated Reasoning, Vol. 206(2-
4), Elsevier, 2008, pp. 425–459.

[14] J.D. Guttman, “Security protocol design via authentication
tests”, In Proceedings of the 15th IEEE Computer Security
Foundations Workshop, IEEE CS Press, June, 2002.

[15] B. Genge, and I. Ignat, “Verifying the Independence of Se-
curity Protocols”, 3rd IEEE International Conference on In-
telligent Computer Communication and Processing, Cluj-
Napoca, Romania, 2007, pp. 155–163.

[16] C.J.F. Cremers, “Verification of multi-protocol attacks”
Computer Science Report CSR 05-10, Eindhoven Univer-
sity of Technology, 2005.

[17] Organization for the Advancement of Structured Informa-
tion Standards, “SAML V2.0 OASIS Standard Specifica-
tion”, http://saml.xml.org/, 2007.

[18] Organization for the Advancement of Structured Informa-
tion Standards, “OASIS Web Services Security (WSS)”,
http://saml.xml.org/, 2006.

[19] J. Heather, G. Lowe, and S. Schneider, “How to Prevent
Type Flaw Attacks on Security Protocols”, In the Proc. of
the 13th Computer Security Foundations Workshop, IEEE
Computer Society Press, July 2000.

[20] C. Meadows, “A Procedure for Verifying Security Against
Type Confusion Attacks”, IEEE Computer Security Foun-
dations Workshop (CSFW’03), 2003, pp. 62–70.

[21] J. Clark, J. Jacob, “A Survey of Authentication Protocol Lit-
erature: Version 1.0”, York University, 17 November 1997.

[22] Laboratoire Specification et Verification, “Security Proto-
col Open Repository”, http:// www.lsv.ens-cachan.fr/spore/,
2008.

[23] T. Dierks, and C. Allen, “The TLS Protocol Version 1.0”,
Request for Comments: 2246, Network Working Group,
January 1999.

