
Verifying the Independence of Security Protocols

Genge Bela
“Petru Maior” University of Tg. Mures

Electrical Engineering Department
16, N. Grigorescu St., Tg. Mures, Romania

bgenge@upm.ro

Iosif Ignat
Technical University of Cluj-Napoca

Computer Science Department
28, Gh. Baritiu St., Cluj-Napoca, Romania

Iosif.Ignat@cs.utcluj.ro

Abstract

Determining if two protocols can be securely run along-
side each other requires analyzing the independence of the
involved protocols. In this paper we construct a canoni-
cal model of security protocols that allows us to conduct a
syntactical analysis on the independence of multiple secu-
rity protocols. By integrating participant knowledge in the
model, we are able to detect subtle multi-protocol attacks,
where the types of certain message components can not be
checked, also known as type-flaw attacks. Of special inter-
est is the construction of messages in the proposed model,
which is made by mapping each message component from
the regular specification to a type. We provide a theorem for
analyzing the independence of security protocols and illus-
trate its applicability by analyzing two protocols.

1. Introduction

Security protocols are communication protocols in
which cryptography is used to give participants the capa-
bility to transmit encoded information that can be only de-
coded by the designated receivers. These protocols have
been intensively analyzed throughout the last few decades,
resulting in a variety of dedicated formal methods and tools
[1, 5, 7, 8, 13, 14, 16]. The majority of these methods con-
sider a Dolev-Yao-like penetrator model [6] to capture the
actions available to a penetrator which has complete control
over the network. By analyzing each individual protocol in
the presence of this penetrator model, the literature has re-
ported numerous types of attacks [3, 8]. However, in prac-
tice, there can be multiple protocols running over the same
network, thus the penetrator is given new opportunities to
construct attacks by combining messages from several pro-
tocols, also known as multi-protocol attacks [10].

Multi-protocol attacks raise the fundamental question of
determining if two protocols can run safely alongside each
other in the same system. The answer can be found by veri-

fying if the involved protocols are independent, namely that
they do not influence each other’s security properties. How-
ever, this can be rather difficult to verify if we consider that
every protocol can have multiple instances. In addition, by
simply inspecting the usual protocol specification, we might
miss attacks based on limited participant knowledge, also
known as type-flaw attacks [5], where the type of certain
message components can not be checked.

To simplify the verification process, in this paper we
provide a canonical model for analyzing the independence
of multiple security protocols. In the first step we enrich
the regular specification with participant knowledge. This
allows us to clearly separate the components that can be
validated by protocol participants from the ones that can
not. Based on this representation, in the next step we con-
struct a canonical model, also called a typed model, that
replaces each message component with its corresponding
type, marking out the message structures that directly influ-
ence the independence of protocols.

The rest of the paper is structured as follows. In Section
2 we extend the regular specification of security protocols
with knowledge. In Sections 3 and 4 we construct the pro-
posed typed model based on the extended specification. We
provide our independence theorem in Section 5. In Section
6 we relate our work to others found in the literature. We
end with a conclusion in Section 7.

2. Extending the regular specification

In the regular strand-based specification [1], protocol
participants are modeled using strands, where a strand de-
notes a sequence of message transmissions. In this sec-
tion we extend this specification with participant knowl-
edge, which plays a major role in the construction of the
typed model from the next sections. From the diversity of
specifications, we have chosen to use and extend the strand-
based specification mainly because of its flexibility, which
has made other authors in the past to extend and apply it in
multiple directions [1, 2, 4].

To achieve our goal, first, we specialize the set of
terms from the original model using basic sets and func-
tion names. By doing so, we are able to map each term to
its corresponding type in the constructions that follow. We
continue with the definition of regular strands, knowledge
strands and penetrator strands.

2.1. Regular and knowledge strands

Roles (i.e. protocol participants) communicate by ex-
changing terms constructed from elements belonging to the
following basic sets: R, denoting the set of role names; N,
denoting the set of nonces (i.e. “number once used”); K,
denoting the set of cryptographic keys.

To denote the encryption type used to create crypto-
graphic terms, we define the following function names:

FuncName ::= sk (secret key)
| pk (public key)
| pvk (private key)
| h (hash)

Here, and in the rest of the paper, sk, pk, pvk and h range
across secret (i.e. symmetric key-based encryption), public
(i.e. asymmetric key-based encryption), private (i.e. private
key encryption, also known as “digital signature”) and hash
function names respectively.

The above-defined basic sets and function names are
used in the definition of terms, where we also introduce con-
structors for pairing and encryption:

T ::= . | R | N | K | (T , T)
| {T }FuncName(T)

where the ‘.’ symbol is used to denote an empty term.
The terms that can be constructed by roles, based on the

definitions above, include the basic components of a wide
variety of security protocols. However, these can be fur-
ther extended if the modeled protocol requires other com-
ponents.

The composition process of two terms t1 and t2 into an-
other term t implies that t has sub-terms. The subterm rela-
tion < is inductively defined as follows.

Definition 1. The subterm relation < is the smallest rela-
tion on terms such that:

1. t < t;

2. t < {t1}f(t2) if t < t1 ∨ t < t2;

3. t < (t1, t2) if t < t1 ∨ t < t2.

Two terms are equal if all their subterms are equal.

Having defined the terms exchanged by participants, we
can proceed with the definition of a strand and a strand
space (i.e. a collection of strands). To capture the sending
and receiving of terms, the strand model from [1] introduces
signed terms. The occurrence of a term with a positive sign
denotes transmission, while the occurrence of a term with a
negative sign denotes reception.

Definition 2. A signed term is a pair 〈σ, t〉 with t ∈ T
and σ one of the symbols +,−. A signed term is writ-
ten as −t or +t. (±T)∗ is the set of finite sequences of
signed terms. A typical element of (±T)∗ is denoted by
〈±t1,±t2, . . . ,±tn〉, with ti ∈ T .

Definition 3. A strand is a sequence of term transmis-
sions and receptions, represented as 〈±t1,±t2, . . . ,±tn〉 ∈
(±T)∗. A set of strands is called a strand space and is de-
noted by Σ.

1. A node is any transmission or reception of a term, writ-
ten as n = 〈s, i〉, with s ∈ Σ and i an integer satisfying
the condition 1 ≤ i ≤ length(s), where length(s) is a
function returning the number of nodes from a strand.
We say that the node n = 〈s, i〉 belongs to the strand s
and strand(n) = s. The set of all nodes is denoted by
N .

2. Let n1 = 〈s, i〉 and n2 = 〈s, i + 1〉 be two consecutive
nodes from N on the same strand s ∈ Σ. Then, there
exists an edge n1 ⇒ n2 in the same strand.

3. Let n1, n2 ∈ N . If n1 is a positive node and n2 is
a negative node and strand(n1) 6= strand(n2), then
there exists an edge n1 → n2.

4. N together with both sets of edges n1 ⇒ n2 and n1 →
n2 is a directed graph 〈N , (⇒ ∪ →)〉.

Definition 4. Let →C⊂→, ⇒C⊂⇒ and C = 〈NC , (⇒C
∪ →C)〉 be an acyclic subgraph of 〈N , (⇒ ∪ →)〉. Then C
is a bundle if:

1. whenever n2 ∈ NC receives a term, there exists a
unique n1 such that n1 →C n2;

2. whenever n2 ∈ NC and n1 ⇒ n2, then n1 ⇒C n2

When running a protocol, roles must act according to the
information extracted from the received terms. However,
this is only possible if roles can decide upon the validity of
the term. The decision can be based on a known pattern
that must be respected by terms (e.g. a role name has the
form someuser@someknownhost.com) or on the fact that
the term value is already known to be valid. The informa-
tion based on which a is called role knowledge.

We model role knowledge as a set of terms attached to
the strand corresponding to a role. Thus, we extend the reg-
ular strands from [1], enriching them with role knowledge,
resulting a new type of strand that we call knowledge strand.

Definition 5. Role knowledge is defined as a set κ ∈ T ∗.
A k-strand (knowledge strand) is a tuple 〈κ, s〉, with knowl-
edge κ ∈ T ∗ and the strand s ∈ Σ. A set of k-strands is
called a k-strand space. The set of all k-strand spaces is
denoted by Σ∗

κ.

2.2. Honest and penetrator k-strands

The proofs from the following sections consider the ex-
istence of multiple k-strand spaces (i.e. multiple security
protocols) and a penetrator k-strand space, ΣP . Penetrator
k-strands model the atomic actions available to the pene-
trator. If a k-strand does not belong to ΣP , it is called an
honest k-strand.

We consider a Dolev-Yao-like penetrator model [6],
where the penetrator has full control over the network. It
can inject, block, alter messages and it is capable of en-
crypting and decrypting messages if the right key is in his
possession.

We specialize the set K to distinguish between the keys
considered to be safe, i.e. KS ⊆ K, and the keys known to
the penetrator, i.e. KP ⊆ K, where KS and KP are disjoint.

By eavesdropping over the network or by inspecting the
terms belonging to previous sessions that have been com-
promised, the penetrator can obtain valid terms. The set of
terms known to the penetrator is denoted by TP .

Let Keys : Σ∗
κ → K∗ be a function returning the set of

cryptographic keys used in a k-strand space and let Safe :
Σ∗

κ → K∗
S be a function returning the set of safe keys used

in k-strand space. Here and in the rest of the paper, K∗

denotes the set of all subsets of keys and K∗
S denotes the set

of all subsets of safe keys. Safe(Σκ) ⊆ Keys(Σκ), where
Σκ is a k-strand space.

Definition 6. A penetrator k-strand is one of the following
(with t, t1, t2 ∈ TP , k ∈ KP and f ∈ FuncName):

M. Text message 〈〈〉,+t〉
F. Flushing 〈〈〉, 〈−t〉〉
T. Tee 〈〈〉, 〈−t, +t, +t〉〉
C. Concatenation 〈〈〉, 〈−t1,−t2,+(t1, t2)〉〉
S. Separation 〈〈〉, 〈−(t1, t2),+t1,+t2〉〉
K. Key 〈〈〉, 〈+k〉〉
E. Encryption 〈〈〉, 〈−k,−t, +{t}f(k)〉〉
D. Decryption 〈〈〉, 〈−k−1,−{t}f(k),+t〉〉

As it can be seen, penetrator k-strands do not include
any local knowledge. However, there is a global knowledge
available to all penetrator k-strands in the form of the two
sets, KP and TP .

3. Typed strands

In this section we construct a canonical model for secu-
rity protocols, based on the k-strand space model from the

previous section and the types defined in this section. The
types we consider are syntactic constructions used to create
other syntactic expressions, such as typed terms. This re-
sults in a typed model that captures the structure of security
protocol messages, which plays a major role in the verifica-
tion process of security protocol independence.

3.1. Typed terms and strands

Typed terms form the basis of the proposed typed model.
These are created by applying term forming constructs, de-
fined below, to basic typed terms and function names. The
function names we consider were already defined in the pre-
vious section, so we only need to define the basic typed
terms.

Our notion of a basic typed term is formalized using the
following grammatical productions:

BasicTT ::= Kt (typed keys)
| r (role type)
| n (nonce type)
| u (unknown type)

In the above definition and in the rest of the paper, Kt, r, n
and u range over typed keys, role types, nonce types and
unknown types respectively.

In the encryption process of the same plaintext, the use
of two different keys, K1 and K2, will produce two differ-
ent ciphertexts. This is also true for the decryption process,
where the use of two different keys results in two different
plaintexts. Because of this, we consider that the type of the
encrypted terms after decryption will change too, according
to the keys that are used. Thus, we use an indexed key type
ki, such that ki 6= kj , where i 6= j, to distinguish between
key types corresponding to different keys. In the definition
of BasicTT , the set of all typed keys is denoted by Kt.

The unknown type corresponds to terms that can not be
validated because of limited role knowledge. By including
this information in the specification we are able to detect
subtle type-flaw attacks using a syntactical comparison of
typed terms, that otherwise would require the construction
of a state-space that can become rather large if we consider
the existence of multiple protocols in the same system.

For the definition of typed terms we introduce construc-
tors for pairing and encryption:

Tt ::= . | BasicTT | (Tt, Tt)
| {Tt}FuncName(Tt)

where the ‘.’ symbol is used to denote an empty typed term.
We define a t-subterm relation <t on typed terms as fol-

lows.

Definition 7. The t-subterm relation <t is the smallest re-
lation on typed terms such that:

1. t <t t;

2. t <t {t1}f(t2) if t <t t1 ∨ t <t t2;

3. t <t (t1, t2) if t <t t1 ∨ t <t t2.

Two typed terms are equal if all their t-subterms are equal.

In the typed strand model, participants exchange typed
terms instead of regular terms. In fact, typed strands are
defined similarly to regular strands.

Definition 8. A signed typed term is a pair 〈σ, t〉 with t ∈
Tt and σ one of the symbols +,−. A signed typed term is
written as −t or +t. (±Tt)∗ is the set of finite sequences of
signed typed terms. A typical element of (±Tt)∗ is denoted
by 〈±t1,±t2, . . . ,±tn〉, with ti ∈ Tt.

Definition 9. A t-strand (typed strand) is a sequence of
typed term transmissions and receptions, represented as
〈±t1,±t2, . . . ,±tn〉 ∈ (±Tt)∗. A collection of t-strands
is called a t-strand space and is denoted by Σt. The set of
all t-strands is denoted by Σ∗

t .

1. A typed node is any transmission or reception of a
typed term, written as nt = 〈st, i〉, with st ∈ Σt

and i an integer satisfying the condition 1 ≤ i ≤
tlength(st), where tlength(st) is a function return-
ing the number of typed nodes from a t-strand. We say
that the typed node nt = 〈st, i〉 belongs to the t-strand
st and tstrand(nt) = st. The set of all typed nodes is
denoted by Nt. If the context allows us, a typed node
is simply called a node.

2. Let nt1 = 〈st, i〉 and nt2 = 〈st, i+1〉 be two consecu-
tive nodes from Nt on the same strand st ∈ Σt. Then,
there exists an edge nt1 ⇒ nt2 on the same t-strand.

3. Let nt1, nt2 ∈ Nt. If nt1 is a positive node and nt2

is a negative node and tstrand(nt1) 6= tstrand(nt2),
then there exists an edge nt1 → nt2.

4. Nt together with both sets of edges nt1 ⇒ nt2 and
nt1 → nt2 is a directed graph 〈Nt, (⇒ ∪ →)〉.

Definition 10. Let→Ct⊂→,⇒Ct⊂⇒ and C = 〈NCt , (⇒Ct

∪ →Ct
)〉 be an acyclic subgraph of 〈Nt, (⇒ ∪ →)〉. Then

Ct is a t-bundle if:

1. whenever n2 ∈ NCt receives a term, there exists a
unique n1 such that n1 →Ct

n2;

2. whenever n2 ∈ NCt
and n1 ⇒ n2, then n1 ⇒Ct

n2

Example. Consider Lowe’s modified version of the BAN
concrete Andrew Secure RPC [3]:

A →B : A,Na

B →A : {Na,K,B}KAB

A →B : {Na}K

B →A : Nb

A B

• •

• •

• •

• •

��

��

��

��

��

��

r,n //

oo
{n,k1,r}sk(k2)

{n}sk(k1) //

oo n

Figure 1: Lowe’s BAN concrete Andrew Secure RPC pro-
tocol representation in the proposed typed strand model.

By running the protocol, the two parties, A and B, establish
a fresh session key K. The nonce Na ensures freshness of
the newly generated key and the nonce Nb is sent by B to
be used in future sessions.

The specification of Lowe’s protocol in the typed strand
model is presented in Figure 1. Role A is modeled as the t-
strand 〈+(r, n),−({n, k1, r}sk(k2)), +({n}sk(k1)),−(n)〉
and role B is modeled as the t-strand 〈−(r, n), +({n, k1, r
}sk(k2)),−({n}sk(k1)),+(n)〉.

This typed representation has been constructed intu-
itively, by replacing each component with it’s correspond-
ing type. However, in Section 4 we present several function
mappings used to transform a k-strand specification into a
t-strand specification.

3.2. Typed honest and penetrator strands

The atomic actions available to the penetrator in the
typed model are identical to the ones from the k-strand
model. The only difference is that instead of dealing with
terms, the penetrator now uses typed terms to construct se-
curity protocol attacks.

The set of t-strands belonging to the penetrator is called
the penetrator t-strand space and is denoted by ΣtP . If a
typed strand does not belong to ΣtP , it is called a typed
honest strand.

We further specialize the set of typed keys Kt with two
disjoint sets, KtS ⊆ Kt, denoting the set of safe typed keys
and KtP ⊆ Kt, denoting the set of typed keys known by the
penetrator. Additionally, a penetrator may possess typed
terms, denoted by the set TtP .

Let TKeys : Σ∗
t → K∗

t be a function returning the set
of all typed keys and let TSafe : Σ∗

t → K∗
tS be a function

returning the set of typed keys considered to be safe in a
typed strand space. Here and in the rest of the paper, K∗

t

denotes the set of all subsets of typed keys and K∗
tS denotes

the set of all subsets of typed safe keys.

Similarly to the k-strand space model, we have
TSafe(Σt) ⊆ TKeys(Σt), where Σt is a typed strand
space.

4. Strand mappings and virtual strands

As seen in the previous sections, the typed model of a
security protocol can only be constructed by relating each
term to it’s corresponding type. To ensure a proper trans-
formation, we define several mapping functions from the
k-strand model to the typed strand model of a protocol.

In the transformation process of a knowledge strand to
a typed strand, term components that are not part of the
knowledge are replaced with an unknown type u and terms
that are part of the knowledge, are transformed according to
the TTr (Term Transformation) function, TTr : T → Tt,
defined as:

TTr(t) =

r, if t ∈ R ,
n, if t ∈ N,
ki, if t ∈ K,
(TTr(t1), TTr(t2)), if t = (t1, t2),
{TTr(t1)}f(TTr(t2)), if t = {t1}f(t2).

where t, t1, t2 ∈ T and f ∈ FuncName.
To transform the terms transmitted or received by a k-

strand into typed terms, we use the KTTr (Knowledge
Term Transformation) function, KTTr : T ∗ × T → Tt,
defined as:

KTTr(κ, t) =
(KTTr(κ, t1),KTTr(κ, t2)), if t = (t1, t2),
{KTTr(κ, t1)}f(KTTr(κ,t2)), if t = {t1}f(t2),
TTr(t), if t ∈ κ,
u, otherwise.

where κ denotes the knowledge corresponding to a strand
and t is the transformed term.

When applying the KTTr transformation function on
each term found in a collection of strands, if the knowledge
of interacting strands is different, the resulting typed strands
will not satisfy Clause 3 from the definition of typed strands.
To solve this problem we introduce the concept of virtual
typed strands, such that for each typed strand denoting a
protocol participant, there is a corresponding virtual typed
strand that acts as a transformation layer for all the received
and transmitted typed terms.

Virtual typed strands (for simplicity also called virtual
strands) and typed strands are constructed from knowledge
strands, using transformation functions. Let sκ = 〈κ, s〉
be a knowledge strand, with s = 〈±t1,±t2, . . . ,±tn〉,
ti ∈ T , s ∈ (±T)∗ and n = length(s). Then the two
functions, KSTr, V STr : T ∗ × (±T)∗ → (±Tt)∗, denot-
ing a transformation function from a knowledge strand to a

typed strand and a transformation function from a knowl-
edge strand to a virtual strand respectively, are defined as:

KSTr(sκ) =
〈±KTTr(κ, t1),±KTTr(κ, t2), . . . ,±KTTr(κ, tn)〉
V STr(sκ) =〈V STr(κ,±t1), . . . , V STr(κ,±tn)〉, if sκ = 〈κ, 〈±ti〉〉,
〈−t, +KTTr(κ, t)〉, if sκ = 〈κ,−t〉,
〈−t, +t〉, if sκ = 〈κ, +t〉.

The following two propositions relate to the process of
key transformation from one model to another. The first
one states that if a key is safe, then the transformed key will
also be safe. The second one states that two different keys
from the k-strand model have different correspondents in
the t-strand model.

Proposition 11. Let KS be the set of safe keys in the k-
strand model and let KtP be the set of keys known by
the penetrator in the t-strand model. If K ∈ KS , then
TTr(K) 6∈ KtP .

Proposition 12. Let Σκ and Σ′
κ be two k-strand spaces,

with Σt and Σ′
t being their corresponding typed strand

spaces. If Ki ∈ Keys(Σ) and Kj ∈ Keys(Σ′), with
Ki 6= Kj , then TTr(Ki) 6= TTr(Kj).

5. Protocol independence

In this section we prove that if certain conditions are
met, protocols can be run in parallel without affecting each
other’s security properties. First, we provide a protocol in-
dependence theorem and then exemplify the applicability of
the theorem accompanied by the proposed typed model by
analyzing the independence of two security protocols.

5.1. Protocol independence theorem

The process of determining if two protocols are inde-
pendent, starts with the examination of the security prop-
erties that each protocol must meet when run in isolation.
The security properties that protocols must meet fall under
one or multiple basic properties: authentication, secrecy,
integrity and non-repudiation [12]. Intuitively, authentica-
tion denotes the process by which the communicating par-
ties are ensured that they are talking to the right partici-
pant. The secrecy property guarantees participants that a
value used in a protocol is not revealed to others. Integrity
and non-repudiation are guaranteed by cryptographic oper-
ations such as hash functions or digital signatures.

By inspecting the mentioned security properties, we for-
mulate two conditions that must be met so that two security
protocols are considered independent (we later discuss each
one of them separately):

• The secret values from one protocol must not be re-
vealed by the other protocol, thus preserving the se-
crecy properties;

• The encrypted messages from the two protocols must
be independent of each other, which leads to the non-
interference of the other three properties (i.e. authenti-
cation, integrity and non-repudiation).

The first condition that must be satisfied by independent
protocols states that secret values from one protocol must
not be disclosed by the other protocol in question. This con-
dition is satisfied by security protocols in general because
session keys and nonces - that usually form the secrets of a
protocol - are generated for every protocol run, separately.
This condition is in fact similar to the “disjoint encryption”
condition from [4]. Secrecy independence is formally de-
fined as follows.

Definition 13. Let Σκ and Σ′
κ be two k-strand spaces,

with S being the set of secret terms belonging to Σκ. Let
SendEncr : Σ∗

κ → T ∗ be a function returning the set of
all encrypted terms transmitted by all k-strands belonging
to a k-strand space.

Σκ is secrecy independent of Σ′
κ if the terms belonging

to S are not sent out in clear by the k-strands s′κ ∈ Σ′
κ and

if t < {t1}f(K), then K ∈ Safe(Σ′
κ), where {t1}f(K) ∈

SendEncr(Σ′
κ).

Σκ is key secrecy independent of Σ′
κ if Σκ is se-

crecy independent of Σ′
κ and (Keys(Σ′

κ) \ Safe(Σ′
κ)) ∩

Keys(Σκ) = φ, where φ denotes an empty set.

The second condition that must be satisfied by indepen-
dent protocols states that the penetrator should not be able
to construct attacks on one protocol based on encrypted
messages originating from a different protocol. The con-
dition includes only encrypted terms because the penetra-
tor can create unencrypted terms using the M, T, C and S
penetrator strands. We verify this condition by using the
typed model, which effectively captures the message struc-
tural similarities, including terms that can not be validated
by roles.

To formally define the second condition we first need to
introduce the CT : Tt × Tt (Constructible) predicate to
express if a typed term t can be constructed from another
typed term t′. By defining this predicate we are able to rea-
son about terms that can be accepted as valid in a protocol,
regardless of where (i.e. other protocol) the terms are origi-
nating from.

CT (t′, t) =

True, if (t = u ∧ t′ ∈ BasicTT)∨

t = t′ ∨ (t′ = u ∧ t ∈ BasicTT)
CT (t′1 , t1) ∧ CT (t′2, t2),

if (t′ = (t′1, t
′
2) ∧ t = (t1, t2))∨

(t′ = {t′1}f(t′2)
∧ t = {t1}f(t2))

Definition 14. Let Σt and Σ′
t be two typed strand spaces.

Let TSendEncr : Σ∗
t → T ∗

t be a function returning the
set of all encrypted terms transmitted by non-virtual typed
strands and let TRecvEncr : Σ∗

t → T ∗
t be a function

returning the set of all encrypted terms received by non-
virtual typed strands.

Σt is message independent of Σ′
t if for all t′ ∈

TSendEncr(Σ′
t) and for all t ∈ TRecvEncr(Σt), the

predicate CT (t′, t) does not hold.

Next, we provide the protocol independence theorem
through the form of a definition and a proposition.

Definition 15. Let Σt and Σ′
t be two typed strand spaces.

Σt is independent of Σ′
t if there is no bundle Ct such

that nP →Ct nt and n′t →Ct n′P , where nt, n
′
t,

nP , n′P ∈ Ct, tstrand(nt) ∈ Σt, tstrand(n′t) ∈ Σ′
t and

tstrand(nP), tstrand(n′P) ∈ ΣtP .

Proposition 16. Let Σκ, Σ′
κ be two k-strand spaces and Σt,

Σ′
t their corresponding t-strand spaces. If Σκ is key secrecy

independent of Σ′
κ and Σt is message independent of Σ′

t,
then Σt is independent of Σ′

t.

Proof. We want to show that, given the conditions, there is
no bundle with a starting node in Σ′

t and an ending node
in Σt. In other words, we show that the penetrator can not
create valid encrypted terms in Σt using any terms captured
from Σ′

t or replay valid encrypted terms from Σ′
t into Σt.

By Definition 13, we may assume that Keys(Σ′
κ) are

either safe or they are not used in cryptographic operations
in Σκ, i.e. Keys(Σκ) ∩ (Keys(Σ′

κ) \ Safe(Σ′
κ)) = φ.

By Propositions 11 and 12 we have that if K ∈ Safe(Σ′
κ)

then TTr(K) ∈ TSafe(Σ′
t) and that if K ∈ Keys(Σ′

κ)
such that K 6∈ Keys(Σκ) then the corresponding typed
key TTr(K) ∈ TKeys(Σ′

t) is not used in cryptographic
operations in Σt, i.e. TTr(K) 6∈ TKeys(Σt).

Because of these, (Keys(Σt)\Safe(Σt))∩(Keys(Σ′
t)\

Safe(Σ′
t)) = φ, thus the penetrator can not get a valid

cryptographic key from Σ′
t to create cryptographic terms to

be injected in Σt. In other words, the typed strands available
to the penetrator (K, E and D) can not be used to create
cryptographic terms that are valid in Σt, based on typed
terms captured from Σ′

t.
If the penetrator can not create encrypted typed terms

that does not mean it can not generate new terms, sep-
arate, concatenate and replay typed terms from one pro-
tocol to another using penetrator strands M, F, T, C and
S. However, because Σt and Σ′

t are message independent,
TRecvEncr(Σt) does not contain any typed encrypted
terms that can be constructed from any typed encrypted
terms of TSendEncr(Σ′

t).

Proposition 17. Let Σκ and Σ′
κ be two k-strand spaces and

Σt, Σ′
t their corresponding t-strand spaces. If Σt is inde-

pendent of Σ′
t, then Σκ is independent of Σ′

κ.

Proof. By Definition 13 we have that the penetrator cannot
obtain cryptographic keys from Σ′

κ to be used in Σκ. Thus,
the penetrator strands K, E and D can not be used to create
valid encrypted terms in Σκ from any terms leaked from
Σ′

κ.
Because Σt is message independent of Σ′

t, we have
that ∀tt ∈ TRecvEncr(Σt) and ∀t′t ∈ TSendEncr(Σ′

t),
CT (t′t, tt) does not hold. By following the inverse logic
of construction, for each typed term tt and t′t there is a set
of terms generated by replacing each typed term with all
possible corresponding values, resulting t and t′, respec-
tively. Because CT does not hold, the typed terms t′t are
not accepted as valid in Σt, thus, by construction, the corre-
sponding t′ terms will not be accepted as valid in Σκ. Thus,
the remaining penetrator strands M, F, T, C and S can not
be used to replay valid terms into Σκ using terms captured
from Σ′

κ.

5.2. Applying the independence theorem

Because of space limitations we illustrate the applica-
bility of the protocol independence theorem by using sim-
plified versions of the Yahalom-Lowe (Y-L) and Kao-Chow
(K-C) protocols (both chosen from the SPORE library [11]),
modeled in the k-strand space as ΣY L and ΣKC respec-
tively. A graphical representation of these protocols can be
seen in Figure 2, where the encryption function is the same
for all cryptographic terms (f = sk) and has been omitted
from the representation for simplicity.

The terms considered to be secret are Nb,KAB for the
Y-L protocol and K ′

AB for the K-C protocol. The set of
all keys is K = {K ′

AB ,KAB ,KAS ,KBS} and the set of
safe keys is KS = {KAS ,KBS}. Because the keys used
in cryptographic operations by both protocols belong to KS

and no secrets from Y-L are transmitted unencrypted by K-
C, ΣY L is key secrecy independent of ΣKC .

To determine if the message independency property is
satisfied we must construct the typed representation of the
two protocols. The knowledge of each role consists of all
the role names, the permanent keys shared with role S and
the nonces or keys generated by each role. After applying
the KSTr function, the resulting typed model can be seen
in Figure 3, where we used interrupted lines to symbolize
the existence of virtual layers. The typed models of ΣY L

and ΣKC are denoted by ΣtY L and ΣtKC respectively.
By applying the CT predicate to all encrypted typed

terms emitted by t-strands in ΣtKC and all typed terms re-
ceived by t-strands in ΣtY L, we find two typed terms for
which CT holds, namely: {r, r, u, k′}k1 emitted in ΣtKC

and {r, u, n, u}k1 received in ΣtY L. Because of this, ΣtY L

is not message independent of ΣtKC . By allowing the two
protocols to run alongside each other, the intruder can con-
struct a type-flaw attack based on these two typed terms. To

A B S

• •

• •

• •
��

��

��

A,Na //

{A,Na,Nb}KBS //

oo
{B,KAB ,Na,Nb}KAS

(a)

B A S

• •

• •

• •
����

��

A,B,N ′
a //

oo
{A,B,N ′

a,K′
AB}KAS

,{A,B,N ′
a,K′

AB}KBS

{A,B,N ′
a,K′

AB}KAS //

(b)

Figure 2: Representing two simplified protocols in the k-
strand model: (a) Yahalom-Lowe (b) Kao-Chow.

correct the problem, we extend the typed term from the Y-
L protocol with a role type, so that the term {r, u, n, u}k1

becomes {r, r, u, n, u}k1 . Thus, the predicate CT will not
hold for any encrypted typed term pair, resulting, by the
independence theorem, that the two protocols (in the cor-
rected form) are independent.

6. Related work

In the literature we find many formal methods developed
for the analysis of security protocols. However, only a few
of these can be applied to the analysis of multiple concur-
rent protocols [13, 15, 16]. One of these approaches was
proposed by Cremers and Maw in [13], based on which a
tool has been developed for the automatic verification of se-
curity protocols [14]. The analysis process is based on a se-
mantic enriched with local role knowledge. This specifica-
tion is used by the automatic tool to construct the state space
and determine if attacks are possible. The analysis of mul-
tiple security protocols is made intuitively, by including in
the specification multiple protocols. In contrast, our method
does not need a construction of the state space. However,
because we developed a method for verifying the indepen-
dence of security protocols, our approach can not be used
for the analysis of a protocol running in isolation. The other
approaches either need additional constructions to include
multiple protocols in the representation [15] or they limit
themselves to a representation from which results are rather
difficult to interpret [16].

The method proposed by Guttman and Fabrega in [4] is
similar to ours in the sense that it uses the strand-based rep-
resentation accompanied by a theorem to verify the inde-

A B S

• •

• •

• •
��

��

��

r,n r,u//

{r,u,n}k2 {r,u,u}k2 //

{r,k,u,u}k1oo
{r,u,n,u}k1

(a)

B A S

• •

• •

• •
����

��

r,r,n r,r,u //

{r,r,u,k′}k1 ,{r,r,u,k′}k2oo
{r,r,u,u}u,{r,r,u,u}k2

{r,r,u,u}u {r,r,n,u}k1 //

(b)

Figure 3: Protocol representation in the t-strand model: (a)
Yahalom-Lowe (b) Kao-Chow.

pendence of security protocols. The approach requires the
identification of message similarities in the modeled proto-
cols that can be used by the penetrator to construct attacks.
This is, however, rather difficult to achieve mainly because
of the multiple protocol instantiations that can simultane-
ously exist. Our method simplifies the identification process
by including in the representation only the types of com-
ponents. This allows a syntactical analysis of the involved
protocols that eliminates the state space explosion problem.

Lately, there has been a growing interest towards pro-
tocol design by composition [2, 9]. The involved sub-
protocols must not only be independent, but the resulting
protocol must present an accumulative set of properties.
These approaches, however, use predefined protocols which
contain sufficient information so that the composition will
not lead to the violation of security properties. Because of
this, these methods can not be applied on existing protocols.

7. Conclusion

We have developed a procedure for verifying the inde-
pendence of security protocols. The proposed model allows
us to conduct a syntactical analysis on security protocol
messages, thus eliminating the state space explosion prob-
lem due to multiple protocol instances. By including role
knowledge in the model, we are able to represent different
participant views on protocol messages. We also provided
several mapping functions to allow a correct transformation
from the regular strand-based specification to the proposed
typed model.

For verifying security protocol independence, we con-
structed a theorem and proved that if two protocols satisfy

a secrecy and a message independence condition, they are
independent not only in the typed model, but also in the
regular model.

Because of the abstraction level that includes only mes-
sage component types, the approach from this paper may
identify message similarities that do not necessarily lead to
attacks. These situations should, however, be resolved be-
cause there may exist an instantiation of the involved mes-
sages that can be manipulated by the intruder to construct
effective computational DoS (i.e. Denial of Service) at-
tacks.

References
[1] F.J.T. Fabrega, J.C. Herzog, J.D. Guttman, “Strand Spaces:

Proving security protocols correct”, Journal of Computer
Science, Vol. 7, 1999, pp. 191–230.

[2] J.D. Guttman, “Security protocol design via authentication
tests”, In Proc. of the 15th IEEE Computer Security Foun-
dations Workshop, IEEE CS Press, 2002.

[3] G. Lowe, “Some new attacks upon security protocols”, In
Proc. of the Computer Security Foundations Workshop VIII,
1996.

[4] J.D. Guttman, F.J.T. Fabrega, “Protocol Independence
through Disjoint Encryption”, In the Proc. of the 13th
CSFW, 2000, pp. 24–34.

[5] C. Meadows, “A Procedure for Verifying Security Against
Type Confusion Attacks”, In the Proc. of the 16th CSFW,
2003, p. 62.

[6] D. Dolev, A. Yao, “On the security of public-key protocols”,
IEEE Transactions on Information Theory, Vol. 29, 1983,
pp. 198–208.

[7] A.D. Gordon, A. Jeffrey, “Authenticity by Typing for Secu-
rity Protocols”, Journal of Computer Security, Vol. 4, 2003,
pp. 451–520.

[8] C. Weidenbach, “Towards an automatic analysis of security
protocols”, In the Proc. of the 16th International Conference
on Automated Deduction, 1999, pp. 378-382.

[9] Hyun-Jin Choi, “Security protocol design by composi-
tion”, Cambridge University, UK, Technical report Nr. 657,
UCAM-CL-TR-657, ISSN 1476-2986, 2006.

[10] C.J.F. Cremers, “Feasability of Multi-Protocol Attacks”, In
the Proc. of the first ARAS conference, 2006.

[11] Security Protocol Open Repository (SPORE), Available at:
http://www.lsv.ens-cachan.fr/spore.

[12] B. Schneier, “Applied Cryptography”, John Wiley & Sons,
1996.

[13] C.J.F. Cremers, S. Mauw, “Operational semantics of security
protocol”, LNCS, Vol. 3466, Springer, 2005.

[14] C.J.F. Cremers, Scyther documentation, 2004.
[15] M. Abadi, A. Gordon, “A calculus for cryptographic proto-

cols: The spi calculus”, Inf. Comput., 1999, pp. 1–70.
[16] G. Lowe, “Casper: A compiler for the analysis of security

protocols”, In the Proc. of the 10th Computer Security Foun-
dations Workshop, IEEE, 1997, pp. 18–30.

