
A Method to Construct Network Traffic Models for Process Control Systems

Iñaki Garitano1∗, Christos Siaterlis2, Béla Genge2, Roberto Uribeetxeberria1 and Urko Zurutuza1

1Electronics and Computing Department

Mondragon University

Goiru 2, 20500 Arrasate-Mondragon, Spain

{igaritano, ru, uzurutuza}@mondragon.edu

2Institute for the Protection and Security of the Citizen

Joint Research Centre

Via E. Fermi 2749, 21027 Ispra (VA), Italy

{christos.siaterlis, bela.genge}@jrc.ec.europa.eu

Abstract

Nowadays, it is a well-known fact that modern Criti-

cal Infrastructures (CIs) depend on Information and Com-

munication Technologies (ICT). Supervisory Control and

Data Acquisition (SCADA) systems with off-the-shelf ICT

hardware and software found their way in Process Control

Systems (PCSs) due to their simplicity and cost-efficiency.

However, recent incidents such as Stuxnet, Duqu or Night

Dragon revealed new ICT vulnerabilities and attack sce-

narios in PCSs. Nevertheless, as shown by recent events,

security studies on real SCADA systems are challenging

due to the lack of proper experimentation environments.

Through this work we develop a method to generate re-

alistic network traffic in laboratory conditions without

the need of a real PCS installation. This is indeed our

main contribution as the basis of future anomaly detec-

tion systems. Such method could support experimentation

through the recreation of realistic traffic in simulated en-

vironments. The accuracy and fidelity of the proposed ap-

proach was validated with several statistical methods that

compare the predicted traffic with traffic taken from a real

installation.

1. Introduction

Critical Infrastructures (CIs) such as power plants,

smart grids, water plants and oil refineries, have relied

on Process Control Systems (PCSs) for their operation

for several decades. At the beginning, PCSs were iso-

lated environments that used proprietary hardware and

software. Nowadays, PCSs are based on common Infor-

mation and Communications Technologies (ICT), and use

standard protocols that enable remote connections from

∗This work has been carried out while I. Garitano was a visiting sci-

entist at the JRC.

the Internet. Although this brings several advantages such

as cost reductions, reduced implementation time, greater

efficiency, flexibility and interoperability between compo-

nents, it also shows several disadvantages. In terms of se-

curity, the adoption of off-the-shelf ICT also introduced a

wide range of threats and vulnerabilities to PCSs. Recent

events such as the Stuxnet worm [6], Duqu [13] and Night

Dragon [10] clearly showed the impact of cyber attacks on

PCSs. They also proved the need for more realistic exper-

imentation environments that would be able to accurately

reproduce the behavior of software and hardware compo-

nents from real installations.

Anomaly detection systems, and specifically model-

based Intrusion Detection Systems (IDSs), in most cases

are based on models that describe the expected/acceptable

behavior of communication networks or systems. Al-

though these models can be effectively used to detect at-

tacks that cause violations of specific rules, their construc-

tion requires a large amount of attack-free traffic data.

Furthermore, changes in the installation could require not

only the development of additional models but also their

validation in real settings. Such operations would hardly

be acceptable in production environments that need to run

reliable and cost-efficient solutions.

In this paper we propose a novel technique for gener-

ating real traffic models in SCADA systems. Our main

contribution consists of an algorithm that generates traf-

fic models based on real SCADA applications developed

by engineers. A SCADA application can be considered a

combination of logic and values. Such applications are

fed as inputs to the proposed algorithm that generates a

model description including packets, variable classes, and

update rates. One of the main advantages of this approach

is that traffic models can be re-generated easily if needed,

without having to analyze real traffic or to develop new

models. In terms of applicability, our proposal could rep-

resent the basis of future intrusion detection systems and

it could support experimentation through the recreation of

realistic traffic in simulated environments. The accuracy

and fidelity of the proposed approach were validated with

several statistical methods that compare the predicted traf-

fic with traffic taken from a real installation.

The rest of the paper is structured as follows. We be-

gin in Section 2 with a description of related work tar-

geting model-based IDSs. Then, in Section 3 we present

the proposed approach introducing a typical PCS architec-

ture, we define the general structure of PCS applications

and we present the proposed algorithm. Section 4 explains

the procedure we followed to validate the algorithm and

it shows the experimental results obtained. Finally, con-

cluding remarks and our ongoing work are presented in

Section 5.

2. Related Work

Our model builds on existing network traffic mod-

els, e.g. Inter-Arrival Time Process, Poisson Distribution

Model [3] and applies these models to PCSs. The main

novelty of our approach is that the procedure for con-

structing the network traffic model creates a tight connec-

tion between industrial applications and network traffic in

PCSs. Furthermore, once the model is available, changes

in the application’s structure do not need to be reflected

in model changes. To the best of our knowledge this is

the first approach that builds an entire PCS network traffic

model from an industrial application’s description. Due to

the fact that one of the main applications of the proposed

approach is in the field of IDS, the following comparison

focuses on existing IDSs to emphasize the advantages and

novelty of the approach.

The extensive work of Mahamood et al. [9] analyzed

different traffic measurement methods and proposed dif-

ferent solutions to apply network traffic monitoring tech-

niques to SCADA systems security. This work focused

on the analysis of protocol headers and traffic flows, it

grouped them in clusters and extracted useful information

using data mining algorithms. Continuing with model-

based techniques, Roosta et al. [11] presented a design of

a model-based IDSs for sensor networks used for PCSs.

This work defined models at different layers of the net-

work stack, such as the physical, link and network layer.

In this way, they identified the following communications

patterns: Master to slave, Network manager to field de-

vices, HMI to masters, and Node-to-node communica-

tions. Even though the previous approaches do not need to

inspect the payload of packets in order to create the mod-

els, their two main disadvantages are the need of attack-

free training data and the fact that they are unable to pre-

dict the size of the packets or the network capacity. These

parameters can play an important part in the detection of

attacks that are able to change packets, e.g. changing ad-

ditional registers, without affecting the traffic flow.

Cheung et al. [4] described three anomaly detec-

tion techniques based on three different models. The

first one, based on protocol-level models, specified Mod-

bus/TCP protocols’ single independent fields, dependent

fields (cross-field relationships) and the relationship be-

tween multiple requests and responses in order to ex-

tract Snort rules. The second technique, communication-

pattern, generated Snort rules by describing communica-

tion models used to detect attacks that violate specific pat-

terns. The third and last one, server/service availability

technique, created a model of available server and ser-

vices and detected changes that could indicate a mali-

cious reconfiguration of a Modbus device. In the same

way, Düssel et al. [5] proposed a payload based real-time

anomaly detection system. Their system was protocol in-

dependent and it was able to detect unknown attacks. This

method took into account the similarity of the communi-

cation layer messages from a SCADA network. Although

the solution presented by Cheung et al. and Düssel et al.

inspects packets’ payload, they are similar to the work of

Mahamood et al. in the sense that they need attack-free

training data.

Next, we mention the work of Valdes et al. [16] that

focused on generating communication patterns and pro-

posed an anomaly detection system for PCSs. Patterns

that were taken into account included source/destination

IP addresses as well as source/destination ports. The sys-

tem classifies as an anomalous if a new pattern shows a

lower probability than a specified threshold. In contrast

to the previous methods, the approach of Valdes et al.

does not need attack-free training data, similarly to the

approach proposed in this paper. However, it is not able

to create the required models without real data and it is

not able to predict the size of the packets and the network

capacity either.

3 Proposed approach

In modern PCS architectures, one can identify two dif-

ferent control layers: (i) the physical layer composed of

all the actuators, sensors, and generally speaking hard-

ware devices that physically perform the actions on the

system (e.g. open a valve, measure the voltage in a cable);

(ii) the cyber layer composed of all the ICT devices and

software which acquire the data, elaborate low level pro-

cess strategies and deliver the commands to the physical

layer. The cyber layer typically uses SCADA protocols

to control and manage the physical devices within the cy-

ber layer. The “distributed control system” of the cyber

layer is typically split into two networks: the control net-

work and the process network. The process network usu-

ally hosts all the SCADA servers (also known as SCADA

Masters) and HMI (Human Machine Interface). The con-

trol network hosts all the devices which, on the one side

control the actuators and sensors of the physical layer and

on the other side provide the “control interface” to the pro-

cess network. A typical control network is composed of

a mesh of PLCs (Programmable Logic Controller). From

an operational point of view, PLCs receive data from the

physical layer, elaborate a “local actuation strategy”, and

send back commands to the actuators. PLCs execute also

the commands that they receive from the SCADA servers

(Masters) and additionally provide, whenever requested,

detailed physical layer data.

3.1 Process Control System Applications

Process Control Systems are controlled by specially

made (personalized) applications for each industrial in-

stallation. An application is a combination of logic and

values. The logic is represented as value dependent con-

ditional actions that the controller should execute. These

applications, together with the controlled process systems,

are unique. Even if the purpose of the application is the

same, depending on the programmer, it would have a dif-

ferent logic and it would use different values, giving a

large number of possibilities.

Although the number of possible applications is enor-

mous, the traffic that results from these can be described

by the following three components: variable classes, num-

ber of variables and variable update rates. These com-

ponents are defined by PCS applications designers and

implemented by developers. The components are part of

PCS application specifications.

• Variable classes: refers to the kind of variables that

the system or the application development tools are

able to manage, e.g. boolean, integer, real

and string. The application programmer should

select the appropriate one for each purpose, e.g. store

the status of a switch in a boolean variable, store

the temperature value in a real variable. Depending

on the class, variables are allocated a specific number

of bytes.

• Number of variables: from the operator’s point of

view, the HMI has to show the status of variables.

Due to the fact that variables consume memory and

process resources, application developers try to use

the minimum number of variables in order to save

resources. Variables can be connected to controller

ports, where the transformation between physical

and cyber values is done.

• Variable update rates: is the time rate at which vari-

able values are refreshed. Depending on their pur-

pose, as defined by engineers, update rates can be the

same for all variables, or they can be defined per vari-

able class or even per variable. On the other hand,

application developers should use the maximum Up-

date Rate (UR) possible in order to save resources.

For example, in the case of a variable designed to

store the time in seconds, it would be enough to up-

date it once per second. If the value is meaningful

in milliseconds, it should be updated every millisec-

ond. However, this would also increase the network

traffic, and calculation times in both end-nodes, i.e.

SCADA server and controllers.

In PCSs, SCADA servers interrogate PLCs using

SCADA communications protocols in order to refresh the

value of local variables. After all, SCADA servers hold

the data that would be presented in a human readable form

to operators behind HMI devices. Even if the purpose of

two applications is totally different, the number of vari-

ables, variable classes and update rates could be the same,

and would generate an identical communication pattern.

SCADA communications protocols such as Mod-

bus/TCP, and DNP3 could be object oriented or variable

oriented protocols. In the case of variable oriented proto-

cols, servers kept the memory address in which variables

are stored. In order to preserve the network bandwidth

and system’s resources, SCADA servers ask for several

variables at the same time. This means that the requested

packet sizes are proportional to the number of requested

variables.

3.2 Methodology

The goal of the proposed algorithm is to generate a

network traffic model starting from a real application de-

scription. It focuses on the communication between the

SCADA server and PLCs with applications in the field

of IDS. Although the approach has several advantages,

as already stated throughout the paper, one of its possi-

ble disadvantages could be that it produces traffic models

for an entire industrial application, while in practice the

presence of network segmentation might prevent its ap-

plicability. In such cases the approach is still applicable

through the identification of sub-applications specific to

each network segment. Although a complete discussion

and proof of concept is not within the scope of this paper,

we foresee a new research direction, as part of our future

work, that explores the structure of industrial applications

and identifies sub-applications for segmented PCS. Before

the actual construction of the algorithm we conducted a

thorough analysis of real traffic between SCADA servers

and PLCs from ABB. The analyzed network traffic was

captured in the Experimental Platform for Internet Contin-

gencies (EPIC), the emulation testbed of the Institute for

the Protection and Security of the Citizen, Joint Research

Centre of the European Commission. The EPIC tesbed is

based on the Emulab software [15], that is able to recreate

a wide range of experimentation environments in which

researchers can develop, debug and evaluate complex sys-

tems [17]. The testbed characteristics have been studied

in several works [12, 7].

By using the EPIC platform, we constructed the topol-

ogy shown in Figure 1. This topology included a real PLC,

a SCADA server together with HMI software, a network

switch and a dedicated node to capture network traffic.

All the devices were connected to the same commuted

LAN. The switch was configured with port mirroring fea-

ture turned ON in order to capture all the traffic between

the SCADA server and the PLC.

The PLC we used was ABB’s 800M with the Manufac-

turing Message Specification (MMS) protocol. As shown

Figure 1. Experimental network topology

Figure 2. MMS protocol layers used by

SCADA servers and PLCs from ABB

in Figure 2, the MMS protocol is located above other pro-

tocols such as the Connection-Oriented Transport Proto-

col (COTP) and ISO Transport Services on top of the TCP

(TPKT).

The communication between the SCADA server and

PLC begins with a setup or initialization process. Then, it

continues with a loop that issues requests at each update

rate in order to refresh the variable values. At this point

we assume that the initialization process can be different

for each communication protocol and device, and specific

to each vendor. Our work focuses on the second part of the

communication in which variables are updated. Figure 3

shows in detail the initialization process and the loop we

are focusing on, i.e. Repeat until Process duration.

Next, we used several applications to generate different

traffic patterns and explore the differences between them.

Table 1 summarizes the number of applications and their

specifications. Each application ran for 20 minutes and the

generated traffic was captured in a separate file using Tcp-

dump [2]. The analyzed information was extracted from

captured files using Scapy [1]. Each capture was analyzed

in terms of:

• Number of packets: number of packets captured.

• Number of different requests: number of different

SCADA server requests sent to the PLC.

• Size of each request (bytes): size in bytes of each

request, including all layers.

Figure 3. The sequence of messages ex-

changed by the SCADA server and PLC

• Packet inter-arrival time (seconds): average time

in seconds between packets arrival time.

• Packet inter-arrival time for each request (sec-

onds): average time in seconds between packets ar-

rival time for each request type.

• Size of each packet based on variable classes

(bytes): packet size by taking into account the num-

ber of variables and their specifications (class, update

rate).

• Number of different requests based on variable

classes: number of different requests due to the fact

that several variable classes could be combined in the

same request.

• Number of different requests based on update

rates: number of different requests due to the fact

that several variable update rates could be combined

in the same system update rates.

The analysis of these features for all the analyzed ap-

plications was used to construct the proposed algorithm.

3.3 Generating Traffic Models

The proposed algorithm generates the traffic model

based on application specifications instead of statistical

traffic analysis. As explained in section 3.1, each appli-

cation can be described in terms of variables, class of

variables and update rates. These specifications are ap-

plication dependent and are used to calculate the commu-

nication pattern between the SCADA server and the PLC.

Although the analysis we made is specific to the MMS

protocol, it can be adapted to other protocols as well, e.g.

Modbus.

Table 1. Description of applications used for algorithm construction
Application Number of Variables Variables Number of Number of

size variables classes per UR system UR applications

Small 1-6 4 13 6 7

Medium 7-60 4 12 6 4

Large 61-120 4 6 6 8

Total 19

The algorithm uses the ”generic” Gaussian distribu-

tion in order to illustrate the applicability of the approach.

However, users can choose between other distributions as

well, e.g. Poisson, in order to best fit their specific net-

work patterns. In this sense we foresee a more extensive

work on choosing the model’s parameters and distribution

functions that we consider to be part of future work.

The proposed algorithm takes the following sets and

variables as input: Uv is the set of variable update rates; C
is the set of variable classes, where each element is a pair

consisting of variable class and length in bytes, denoted

by (c, l), e.g. (integer, 2); V is the set of variables,

where each element is a pair consisting of variable class

and variable update rate, denoted by (c, uv); Us is the set

of system update rates; d is the duration of the trace (in

seconds) that is generated by the algorithm; and b is the

network bandwidth. As output, the algorithm generates a

set of packet descriptions P , where each packet is defined

as a pair including the transmission time and the size of

the packet, denoted by (θ, σ). For simplicity, throughout

the paper we use the Xz
y notation to denote the y com-

ponent of the z-th element in set X . For instance, taking

the C set, the j-th element is denoted by Cj , and the c
component of the j-th element is denoted by Cj

c .

The algorithm starts with the MAIN function by initial-

izing the set of packet descriptions P and numP , where

the later one is used to count the number of packets. Next,

it loops through all system update rates U j
s and variable

classes Ck
c and calls the Packet(j, Ck

c) function to get

the number of variables that should be placed in a packet.

Then, based on the returned value and the size of the vari-

able class Ck
l , it calculates the packet size σ at line #24.

As users can explicitly specify the length of the trace,

i.e. through the d variable, we calculate the number of

transmissions by dividing d to each update rate U j
s . For

each transmission we increase numP and we generate a

random number r using a Gaussian distribution function.

The role of this random number is to introduce a realis-

tic deviation from the configured update rate. Such de-

viations are caused by multi-process OSs, delays in net-

work communications, etc., and are frequent in real envi-

ronments. Based on this value we calculate the predicted

transmission time θ and we add a new packet description

to P .

Starting with line #33 we sort the P set in a time order

and we change the transmission time of packets in order

to take into account the bandwidth of the system. More

specifically, we calculate the time t needed to send each

packet P j−1 by dividing the size of the packet P j−1
σ to

the bandwidth b. Then, if the time needed to send the

Algorithm 1 Traffic model generator

1: input :< Uv, C, V, Us, d, b >, output :< P >
2: /*The Packet function counts all variables of class C that satisfy

a set of conditions. This number is used by the MAIN function to

calculate the size of the packet.*/

3: function Packet(i, c)
4: X := 0
5: for (j := 1 to |V |) do

6: if (V j
c = c) then

7: if ((i = 1) AND (V j
u < U2

s)) then

8: X := X + 1

9: if ((1 < i < |Us|) AND

10: (U i
s ≤ V j

u < U i+1
s)) then

11: X := X + 1

12: if ((i = |Us|) AND (U i
s ≤ V j

u)) then

13: X := X + 1

14: return X
15: function MAIN
16: P := ∅, numP := 0
17: /*The first phase calculates for each system Update Rate (Us) and

each variable class (C) the set of packet descriptions (P) from the

request size (σ) and the packet transmission time (θ).*/

18: for j := 1 to |Us| do

19: for k := 1 to |C| do

20: σ := Ck
l · Packet(j, Ck

c)
21: for g := 1 to (d/U j

s) do

22: numP := numP + 1
23: r := rand(′Gauss′, 0, 10−3)
24: θ := (g − 1)U j

s + r
25: P := P ∪ (θ, σ)

26: sort by transmission time(P)

27: /*The second phase uses the set P to calculate the transmission

time taking into account the available bandwidth (b).*/

28: for j := 2 to numP do

29: t := P j−1
σ /b

30: if P j
θ < P j−1

θ + t then

31: P j
θ := P j−1

θ + t

32: return P

previous packet exceeds the actual packet transmis-

sion time, we update the transmission time of the current

packet, as shown in line #37.

Finally, we briefly describe the Packet(i, c) function,

used to count the number of variables sent out in the i-
th system update rate. This function returns the number

of variables of class c for which the update rate satisfies

one of the next three conditions. The first condition given

at line #6 is a particular case and counts all variables for

which the configured update rate is smaller than the sec-

ond system update rate. Requests for all such variables

will be sent out during the first system update rate. The

second condition, given at line #9, counts variables that

are between two sequent system update rates, i.e. U i
s and

U i+1
s . Finally, the third condition counts all variables that

have a greater update rate than the last system update rate,

i.e. U i
s ≤ V j

u for i = |Us|.

4 Validation and experimental results

The proposed algorithm generates an ordered sequence

of packets described by time and size. A prototype of the

algorithm was implemented in Matlab [14] and it was used

in the validation process. The validation included several

statistical methods comparing the predicted traffic model

with traces captured from a real SCADA installation.

Three different applications were used to validate the

proposed approach. Each one included a different num-

ber of variables, variable classes and variable update rates.

The real traffic for each application was then compared to

the generated traffic models in terms of: number of pack-

ets, packet sizes, throughput, and packet inter-arrival time.

For evaluating errors between the predicted and the

real traffic we used the Mean Absolute Percentage Error

(MAPE). According to Lewis (1982) [8], the lower the

MAPE the more accurate the forecast. This way, it is con-

sidered that a MAPE value less than 10% shows a high

accuracy, while between 11% and 20% we can assume a

good result. A result between 21% and 50% is consid-

ered reasonable. However, in case the error is larger than

51% it can be a clear indicator of inaccuracy. Throughout

the validation process we used the following equation to

calculate MAPE:

100

n

n
∑

t=1

∣

∣

∣

∣

Rt − Pt

Rt

∣

∣

∣

∣

, (1)

where Rt is the real value in period t, Pt is the predicted

value in period t and n is the number of periods used in

the calculations.

4.1 Number of packets

As shown in Table 2 the calculated error for the pre-

dicted number of packets is smaller than 1%. This is

because even if the number of variables, variable classes

and variable update rates are different for each applica-

tion, variables can be placed in the same request, and will

generate the same number of packets.

4.2 Packets sizes

For the second and third application, packet sizes are

exactly the same in the predicted and real applications,

giving an error of 0%. Due to the fact that the analyzed

protocol has a dynamic field, i.e. the sequence number,

which can change its size, for the first application we

recorded an error of 48.16%. At this point the proposed al-

gorithm does not take into account the variation of packet

sizes, and this is why almost half of the real packets from

the first application have a different size. However, an im-

proved version of the algorithm can take dynamic sizes

into account, but this would need more investigation and

we consider it as part of our future work.

0 40 80 120 160 200
2.5

3.0

3.5

4.0

Capture snapshot (seconds)

T
h

ro
u

g
h

p
u

t
(K

B
y

te
s/

se
co

n
d

)

Real

Predicted

Application 3

Application 2

Application 1

Figure 4. Comparison of throughput be-

tween predicted & real traffic

4.3 Throughput

The predicted throughput can be extracted by splitting

the output of the algorithm in blocks of one second and

summing the number of bytes. The following equation

shows how to obtain the throughput for a specific second:

Throughput(secondx) =
∑

|Plength| :

secondx ≤ Ptime < secondx+1. (2)

As shown in Table 2, in all cases the average through-

put error is smaller than 2%, demonstrating the accuracy

of the proposed algorithm. However, the errors for max-

imum throughput are bigger than 41%, while the error

for minimum throughput for the first application is about

2321%. These maximum values are due to real system

Table 2. Experimental results comparing the predicted and real network traffic

Application
Number of Packets Throughput (bytes/sec.) Packets inter-arrival time error

packets sizes Avg. Max. Min. 50ms 500ms 1s 3s 6s

1

Predicted 29400 114 2793 2964 2736

Real 29165 113/114 2758 5928 113 4.88% 0.70% 0.32% 0.37% 0.12%

Error 0.80% 48.16% 1.27% 50% 2321%

2

Predicted 29400 132 3234 3432 3168

Real 29421 132 3236 6336 660 8.34% 0.28% 0.32% 0.06% 0.20%

Error 0.07% 0% 0.07% 46% 380%

3

Predicted 29400 152 3724 3952 3648

Real 29407 152 3725 6688 760 4.53% 0.15% 0.08% 0.01% 0.01%

Error 0.02% 0% 0.02% 41% 380%

operations in which transmission times can be delayed,

leading to a drop in the throughput value. In the next sec-

onds these are followed by transmissions of the missed

packets, leading to an increase in the throughput value.

Consequently, the measured errors in some cases increase

to large values. However, in the next seconds the error

drops back to values smaller than 2%. A clear example

of this behavior is also shown in Figure 4, where in the

case of application 1 we can see a drop in the throughput,

followed by a peak.

4.4 Packet inter-arrival time

All the errors we measured for packet inter-arrival time

were smaller than 10% and in most cases the error was

less than 1%. As expected, the largest error was measured

for the smallest update rate, i.e. 50ms, that is mainly due

to the non-real-time OS we used to run the SCADA server

and due to network delays. In order to estimate the distri-

bution of packets in the predicted and real traffic, we also

calculated the Cumulative Distribution Function (CDF),

shown in Figure 5. These figures show the accuracy of

the predicted and of real applications for the configured

system update rates. In each figure the horizontal axis is

a ten milliseconds time interval (given in seconds), while

the vertical axis represents the percentage of packets for

each system update rate.

As we can clearly see in Figure 5, the largest differ-

ence between the predicted and real packet distributions

is for a 50ms update rate. The reason for this was al-

ready discussed in the previous paragraph and it can also

be justified by looking at the measured errors in Table 2.

The following figures show a more accurate CDF with the

increase of the system update rate. By inspecting these

figures we also notice that packet distributions can be spe-

cific to each application. In fact, in order to predict more

accurately the small variations in the distribution that we

can see in each case, the proposed algorithm used a Gaus-

sian distribution function. This way we increased the ac-

curacy of the approach and, as already discussed, we man-

aged to obtain an error of less than 1% in most of the

cases. Nevertheless, we believe that the algorithm can

be further improved in order to take into account more

application-specific variations and to further reduce all er-

rors below 1%.

5 Conclusions and future work

Recent approaches in the field of Process Control Sys-

tem (PCS) traffic modeling [9, 11, 4] proved that the con-

struction of accurate network traffic models is a difficult

task. The time and resources required to construct realistic

models constitute one of the biggest issues that engineers

must solve. On the other hand, the automated model con-

struction based on SCADA application characteristics can

effectively eliminate these issues. Therefore, this paper

proposes an approach to generate network traffic models

for PCSs, starting from application-specific data such as

the number of variables, variable types and variable up-

date rates. Our main contribution is an algorithm that

takes as input an application description and generates a

traffic model of a given duration. The algorithm was con-

structed by inspecting the network traffic taken from a real

SCADA installation including several applications. As

shown by experimental results, the algorithm is highly ac-

curate and it can predict the number of packets by an error

< 1%, the packet sizes by an error of 0%, the throughput

by an error < 2% and the packet inter-arrival time by an

error < 10%.

The main advantage of the proposed approach is that

traffic models can be re-generated easily if needed, with-

out having to analyze real traffic or to develop new mod-

els. Furthermore, the approach can be applied in several

domains, starting from Intrusion Detection Systems, to the

recreation of network traffic in simulated/experimental en-

vironments. As future work, we intend to apply the ap-

proach in the previously mentioned fields and to enhance

it with application-specific analysis in order to further re-

duce errors in all measured cases below 1%.

Acknowledgements

Iñaki Garitano is supported by the grant BFI09.321 of

the Department of Research, Education and Universities

of the Basque Government.

0.045 0.05 0.055
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 50ms update rate

0.495 0.5 0.505
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 500ms update rate

0.995 1 1.005
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 1s update rate

2.995 3 3.005
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 3s update rate

5.995 6 6.005
0

0.2

0.4

0.6

0.8

1

Time(seconds)

P
er

ce
n

ta
g

e

CDF 6s update rate

Predicted

Application 1

Application 2

Application 3

Figure 5. The calculated Cumulative Distribution Function (CDF) for each update rate

References

[1] Scapy. http://www.secdev.org/projects/

scapy/, 2012. [Online; accessed March 22, 2012].

[2] Tcpdump & libpcap. http://www.tcpdump.org,

2012. [Online; accessed March 22, 2012].

[3] B. Chandrasekaran. Survey of network traffic models,

2009.

[4] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skin-

ner, and A. Valdes. Using model-based intrusion detection

for scada networks. Proceedings of the SCADA Security

Scientific Symposium, 2006.

[5] P. Düssel, C. Gehl, P. Laskov, J.-U. Bußer, C. Strmann,

and J. Kstner. Cyber-critical infrastructure protection us-

ing real-time payload-based anomaly detection. Critical

Information Infrastructures Security, 6027:85–97, 2010.

[6] N. Falliere, L. O. Murchu, and E. Chien. W32.stuxnet

dossier. http://www.symantec.com/content/

en/us/enterprise/media/security_

response/whitepapers/w32_stuxnet_

dossier.pdf, February, 2011. [Online; accessed

February 28, 2012].

[7] B. Genge, C. Siaterlis, I. N. Fovino, and M. Masera. A

cyber-physical experimentation environment for the se-

curity analysis of networked industrial control systems.

Computers & Electrical Engineering, 2012. Accepted.

[8] K. D. Lawrence, R. K. Klimberg, and S. M. Lawrence.

Fundamentals of forecasting using excel. Industrial Pr,

2008.

[9] A. N. Mahmood, C. Leckie, J. Hu, Z. Tari, and M. Atiquz-

zaman. Network traffic analysis and scada security. Hand-

book of Information and Communication Security, pages

383–405, 2010.

[10] McAfee Foundstone Professional Services and

McAfee Labs. Global energy cyberattacks: ”night

dragon”. http://heartland.org/sites/all/

modules/custom/heartland_migration/

files/pdfs/29423.pdf, February 10, 2011.

[Online; accessed March 23, 2012].

[11] T. Roosta, D. K. Nilsson, U. Lindqvist, and A. Valdes.

An intrusion detection system for wireless process control

systems. In 5th IEEE International Conference on Mo-

bile Ad Hoc and Sensor Systems, 2008. MASS 2008, pages

866–872. IEEE, 2008.

[12] C. Siaterlis, A. P. Garcia, and B. Genge. On the use of em-

ulab testbeds for scientifically rigorous experiments. IEEE

Communications Surveys and Tutorials, 2012. Accepted.

[13] Symantec. W32.duqu the precursor to the next stuxnet.

http://www.symantec.com/content/en/

us/enterprise/media/security_response/

whitepapers/w32_duqu_the_precursor_to_

the_next_stuxnet.pdf, November 23, 2011.

[Online; accessed February 28, 2012].

[14] The MathWorks Inc. Matlab - the language of tech-

nical computing. http://www.mathworks.com/

products/matlab/, 2012. [Online; accessed March

04, 2012].

[15] The University of Utah. Emulab bibliography. http://

www.emulab.net/expubs.php, February 28, 2012.

[Online; accessed March 04, 2012].

[16] A. Valdes and S. Cheung. Communication pattern

anomaly detection in process control systems. In IEEE

Conference on Technologies for Homeland Security, 2009.

HST’09., pages 22–29. IEEE, 11-12/04/2009 2009.

[17] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-

tegrated experimental environment for distributed systems

and networks. ACM SIGOPS Operating Systems Review,

36(SI):255–270, 2002.

