
Using Soft Real-Time Simulation in a Hybrid Environment for Cyber-Physical
Security Experiments

Béla Genge and Christos Siaterlis
Joint Research Centre, IPSC, European Commission

Via E. Fermi, 2749, Ispra (VA), 21027, Italy,
Email: {bela.genge, christos.siaterlis}@jrc.ec.europa.eu

Abstract—The study of complex systems, either physical or
cyber, could be carried out by experimenting with real systems,
software simulators or emulators. This paper presents an
innovative framework for an experimentation environment that
incorporates both physical and cyber systems. The proposed
approach uses soft real-time simulation for physical processes
(based on Simulink) and an emulation testbed (based on
Emulab) for ICT components. The paper also presents two
coupling algorithms that couple the simulation time to the
system time, in order to achieve soft real-time simulation
on a multitasking OS. The main difference between the two
algorithms is the size of the critical section that enables
concurrent access to a shared resource between emulated and
simulated environments. The experimental results show that
resource sharing between the two environments is a major
concern and future algorithms should also consider a proper
analysis of critical sections.

Keywords-Soft real-time, Simulation, Emulab, cyber-
physical, security.

I. INTRODUCTION

Modern Critical Infrastructures (CI), e.g. power plants,
water plants and transport systems, rely on Information and
Communication Technologies (ICT) for their operation since
ICT can lead to cost reduction as well as greater efficiency,
flexibility and interoperability between components. In the
past CIs were isolated environments and used proprietary
hardware and protocols, limiting thus the threats that could
affect them. Nowadays CIs and more specifically Networked
Industrial Control Systems (NICS) are exposed to significant
cyber-threats; a fact that has been highlighted by many
studies on the security of Supervisory Control And Data
Acquisition (SCADA) systems [1].

The study of complex systems, either physical or cyber,
could be carried out by experimenting with real systems,
software simulators or emulators. Experimentation with pro-
duction systems suffers from the inability to control the
experiment environment in order to reproduce results. Fur-
thermore if the study intends to test the resilience or security
of a system, there are obvious concerns about the potential
side effects (faults and disruptions) to mission critical ser-
vices. On the other hand the development of a dedicated
experimentation infrastructure with real components is often
economically prohibitive and disruptive experiments on top

of it could be a risk to safety. Software based simulation
has always been considered an efficient approach to study
physical systems, mainly because it can offer low-cost, fast
and accurate analysis. Software simulators can effectively
model normal operations, however, they fail to capture the
way computer systems fail.

Based on these facts, this paper follows a hybrid approach
in between the two extremes of pure simulation and exper-
imentation with only real components. It proposes the use
of simulation for the physical components and an emulation
testbed based on Emulab [2] in order to recreate the cyber
part of NICS, e.g., SCADA servers, corporate network,
etc. The models of the physical systems are developed in
Matlab Simulink from which the corresponding ’C’ code
is generated using Matlab Real Time Workshop (Matlab
RTW). The generated code is then executed in soft real-
time and is able to interact with the real components of the
emulation testbed.

Soft real-time systems are allowed to miss deadlines from
time to time without any catastrophic consequences [3].
In the context of process model simulation the deadlines
represent model executions. As the code generated with
Matlab RTW must be executed in fixed time steps, i.e. the
time between two model executions, missing deadlines leads
to the accumulation of model execution delays. As a con-
sequence, for the previous statement to hold in the context
of soft real-time simulations there must be a mechanism
that recovers the missed model executions. We implement
such a mechanism within a coupling algorithm that couples
the model execution to the system time. Based on several
experimental results we show that the interaction with the
other components of the emulation testbed affects the cou-
pling mechanism through the introduction of a deviation
time, i.e. the difference between simulation and system
time. However, the deviation can be significantly reduced by
maximizing the size of critical sections, i.e. code sequence
that accesses a shared resource and must not be concurrently
run by more than one thread. This approach does not follow
general critical section design principles, which tend to
minimize the size of critical sections in order to ensure
access to as many concurrent threads as possible. Therefore
our main contribution is that we show that applying general

critical section design principles in the context of soft real-
time simulations leads to an accumulated deviation that
makes the entire system unusable.

The paper is structured as follows. After a short overview
of related work in Section II, the proposed framework is
presented in Section III followed by Section IV with the
presentation of two coupling algorithms that enable soft
real-time simulation of process models. The performance
analysis of the two algorithms is presented in Section V and
the paper concludes in Section VI.

II. RELATED WORK

An approach that uses real components for the physical
parts of NICS and partly simulated ones for the cyber parts
has been proposed by Chunlei, et al. [4]. This approach
uses a real OPC (Object Linking and Embedding (OLE)
for Process Control) server, the NS-2 network simulator and
real PLCs and field devices to analyze NICS. NS-2 is used
to simulate the enterprise network of the SCADA system.
Calls from NS-2 are dispatched through software agents to
the OPC server that sends Modbus packages to the physical
PLCs. Although from one point of view such a testbed would
provide reliable experimental data, since almost everything
is real, it would be hardly able to support tests on large
infrastructures such as the process system of a chemical
installation, because that would require a complete industrial
system to experiment with. Another approach that uses real
physical devices has been proposed by Queiroz, et al. [5].
In this case only the sensors and actuators are real physical
devices, while the remaining components, e.g., PLCs, and
the communication protocols between them are implemented
as OMNeT++ modules.

Other researchers have focused on simulating both
SCADA and field devices. For example, Chabukswar,
et al. [6] used the Command and Control WindTunnel
(C2WindTunnel) [7] multi-model simulation environment,
based on the High-Level Architecture (HLA) IEEE standard
1.3 [8], to enable the interaction between various simula-
tion engines. The authors used OMNeT++ to simulate the
network and Matlab Simulink to build and run the physical
plant model. C2WindTunnel provides the global clock for
both OMNeT++ and Matlab Simulink. With this approach,
analyzing the cyber-physical effects of malware is not a
trivial task, as it requires a detailed description of all ICT
components and more importantly a detailed knowledge on
the dynamics of malware, that is not always available.

Outside the context of NICS security we find several
approaches for achieving soft real-time execution. The work
of Brandt, et al. [9] introduces priority levels. When an
application is detected to miss a deadline, its level is
automatically decreased so that it receives more computing
power. However, this approach can only be applied if there is
a complete control over the task scheduling mechanism, that
is not trivial on modern multitasking OS. Another approach

to ensure a soft real-time execution is the optimization
of algorithms and application structure. In this direction
we find the work of Tromp, et al. [10] that reduced the
overall execution time of their simulation algorithm by
optimizing matrix operations and by reducing the processor
cache misses. Although this is rather an application-specific
approach, it shows that soft real-time can also be achieved
from the user space on a multitasking OS. Our approach
also discusses the importance of algorithm design in the user
space, however, it goes further into the details of resource
sharing between different simulators and emulators, a topic
that is not covered by previous methods.

III. FRAMEWORK ARCHITECTURE

This section presents a new experimentation framework
for studying the physical impact of cyber-threats against
Networked Industrial Control Systems (NICS).

A. Process Control Architecture Overview

In modern NICS architectures, one can identify two differ-
ent control layers: (i) the physical layer composed of all the
actuators, sensors, and generally speaking hardware devices
that physically perform the actions on the system (e.g. open
a valve, measure the voltage in a cable); (ii) the cyber
layer composed of all the ICT devices and software which
acquire the data, elaborate low level process strategies and
deliver the commands to the physical layer. The cyber layer
typically uses SCADA protocols to control and manage the
physical devices within the cyber layer. The “distributed con-
trol system” of the cyber layer is typically split among two
networks: the control network and the process network. The
process network usually hosts all the SCADA (also known
as SCADA Masters) and HMI (Human Machine Interface)
servers. The control network hosts all the devices which, on
the one side control the actuators and sensors of the physical
layer and on the other side provide the “control interface” to
the process network. A typical control network is composed
of a mesh of PLCs (Programmable Logic Controllers). From
an operational point of view, PLCs receive data from the
physical layer, elaborate a “local actuation strategy”, and
send back commands to the actuators. PLCs execute also the
commands received from the SCADA servers (Masters) and
additionally provide, whenever requested, detailed physical
layer data.

B. Framework Overview

The proposed experimentation framework follows a hy-
brid approach, where the Emulab-based testbed recreates
the control and process network of NICS, including PLCs
and SCADA servers, and a software simulation reproduces
the physical processes. The argument for using emulation
for the cyber components is that the study of the security
and resilience of computer networks would require the
simulation of all the failure related functions, behaviors and

states, most of which are unknown in principle. On the
other hand software simulation is a very reasonable approach
for the physical layer due to small costs, the existence of
accurate models and the ability to conduct experiments in a
safe environment.

The architecture, as shown in Figure 1, clearly distin-
guishes 3 layers: the cyber layer, the physical layer and a
link layer in between. The cyber layer includes regular ICT
components used in SCADA systems, while the physical
layer provides the simulation of physical devices. The link
layer provides the glue between the two layers through the
use of a shared memory region.

IP: 192.168.1.2

PLC

MEM

Tight

coupling

Physical

Models

PLC

MEM

IP: 192.168.1.1

R-PLC

Unit

Master

Unit

MEM

Read/Write

Physical LayerCyber-Physical

Layer
Cyber Layer

SC Unit

Loose

coupling

PLC code

PLC code

Tight

coupling

Temperature
Sensor

Pump 1

Pump 2

Turbine

Generator

Pressure
Sensor

Fuel

Condenser

VOUT

Temperature
Sensor

Vessel

Control
Rods

MEM

Read/Write

R-PLC

Unit

MEM

Read/Write

Emulab

testbed
IP: 192.168.1.3

IP: 192.168.1.4

Figure 1: Architectural overview

The physical layer is recreated through a soft real-time
simulator that runs within the SC (Simulation Core) unit
and executes a model of the physical system. The simulator’s
execution time is strongly coupled to the timing service of
the underlying operating system (OS) and is run in soft real-
time. Throughout the paper the term time step is used to
denote the time between two successive executions of the
physical model in the simulator.

The cyber layer is recreated by an emulation testbed
that uses the Emulab architecture and software [2] to au-
tomatically and dynamically map physical components (e.g.
servers, switches) to a virtual topology. In other words the
Emulab software configures the physical topology in a way
that it emulates the virtual topology as accurately as possible.

Besides the process network, the cyber layer also includes
the control logic code, that in the real world is run by
PLCs. In the proposed approach the control code can be
run sequentially or in parallel to the physical model. In the
sequential case, a tightly coupled code (TCC) is used, i.e.
code that is running in the same memory space with the
model, within the SC unit. In the parallel case a loosely cou-
pled code (LCC) is used, i.e. code that is running in another
address space, possibly on another host, within the R-PLC
unit (Remote PLC). The main advantage of TCCs is that
these do not miss values generated by the model between
executions. On the other hand, LCCs allow running PLC

code remotely, to inject (malicious) code without stopping
the execution of the model, and to run more complex PLC
emulators. As control code is implemented within TCCs and
LCCs, throughout the paper these terms are used to denote
PLCs.

The cyber-physical layer incorporates the PLC memory,
seen as a set of registers typical of PLCs, and the commu-
nication interfaces that glue together the other two layers.
Memory registers provide the link to the inputs (e.g. valve
position) and outputs (e.g. sensor values) of the physical
model.

C. Implementation Details

Prototypes of SC, R-PLC and Master units have been
developed in C# (Windows) and have been ported and tested
on Unix-based systems (FreeBSD, Fedora and Ubuntu) with
the use of the Mono platform. The implementation allows
TCCs to be provided either as C# source files or as binary
DLLs, both dynamically loaded at run-time. C# source files
are dynamically loaded, compiled and executed at run-time
using .NET’s support for dynamic code execution. C# source
files provide the ability to implement PLC code without the
need of a development environment at the cost of longer ex-
ecution time. At this time, LCCs are written in C# and must
be compiled together with the SC-unit. Matlab Simulink
was used as the physical process simulator (physical layer)
since it is a general simulation environment for dynamic and
embedded systems. The communication between SC and
R-PLC units is handled by .NET’s binary implementation
of RPC (called remoting) over TCP. Currently, for the
communication between the R-PLC and the Master units,
the Modbus over TCP protocol is implemented.

IV. COUPLING ALGORITHMS

The main role of the SC unit is to provide a soft real-time
execution of the process model. This is achieved through a
coupling algorithm (CA) that couples the execution time
of the model to the system time. The main concern with
the design of such an algorithm proves to be the PLC
memory that is a shared resource between the SC unit and
R-PLC units. This means that the PLC memory needs to
be protected against simultaneous access, which introduces
the problem of critical sections known from the field of
concurrent programming. Intuitively, a CA would need
to run the process model only once for each time step.
However, in a multi-tasking environment such an approach
introduces accumulated deviations as the OS can stop and
resume threads without any intervention possibilities from
the user space. Based on this observation, we state that the
coupling algorithm must include a certain mechanism to run
the process model multiple times in each time step in order
to reduce deviations.

Following this section we present two coupling algo-
rithms: the first one is designed to minimize, while the

second one is designed to maximize the size of the critical
section. Both coupling algorithms run the process model
multiple times in each time step in order to reduce devia-
tions. The main difference between the two is the positioning
of the acquire and release function calls that mark the
beginning and the end of the critical section, respectively.
The protected resource is the PLC memory accessed by
the physical model, TCCs, and in parallel by LCCs. The
first algorithm minimizes the size of the critical section by
releasing the resource when it is no longer used. This ensures
that more R-PLC units can access the resource in each time
step. The second algorithm maximizes the size of the critical
section by keeping the resource locked until the deviation
is reduced even if the resource is not used at all times. The
second algorithm clearly violates general design principles
for critical sections, as it keeps the resource locked when it is
no longer used. However, in the following section we show
that the second algorithm reduces deviations and enables the
system to support even 100 PLCs, which is not possible with
the first algorithm.

A. Minimal Coupling Algorithm

The CA reads from the PLC memory before running the
process model in order to get the necessary model inputs
(e.g. valve position, digital output) and writes to the PLC
memory afterwards in order to provide the model outputs
(e.g. pressure, temperature) to the other units. Within this
context, the Minimal Coupling Algorithm (MiCA) ensures
a minimal accessing time of the PLC memory. More specif-
ically, it acquires the PLC memory resource only for two
operations: reading and writing. After the read operation
it immediately releases the resource and runs the process
model. Afterwards, the resource is acquired again in order
to write back the output of the model.

The structure of the MiCA is given in Algorithm 1. It
starts by setting the simulation time (tsim) with the help of
the @GetSysT ime() function. The value of tsim is then
updated after each time step within the while structure.
Because the MiCA is running in user space of a multi-
tasking OS, it must be prepared to handle task changes
during which the current thread is not running. For this
reason the MiCA includes a second while structure that
ensures a minimal difference between the system time and
the running time of the process model. In other words,
it provides a minimal deviation from the system time by
running the process model as many times as necessary
for reducing the time difference. Within this structure, the
@AcquirePLCMem() and @ReleasePLCMem() func-
tions are used to acquire and release the shared resource,
respectively. The PLC memory is accessed through the
@ReadPLCMem() and @WritePLCMem() functions
while the physical model and TCCs are run with the
@RunPhysical() and @RunTCC() functions, respec-
tively. TCCs are running sequentially with the model and

need to access the PLC memory before running the control
code and afterwards. Thus, the shared resource must be
acquired and released once again.

Calls received from LCCs are executed by a different
thread than the one running Algorithm 1. These calls use the
same @AcquirePLCMem() and @ReleasePLCMem()
functions to acquire and release the PLC memory. After
acquiring the resource, the calling thread reads or writes the
PLC memory, according to the instructions received from
LCCs. Because of its simplicity and space considerations
this code is not presented in this paper.

Algorithm 1: Minimal Coupling Algorithm - MiCA

begin
tsim ← @GetSysT ime()
while FOREV ER do

tdiff ← @GetSysT ime()− tsim
if tdiff ≥ TIMESTEP then

tstep ← TIMESTEP
while tdiff > tstep do

@AcquirePLCMem()
datain ← @ReadPLCMem()
@ReleasePLCMem()
dataout ← @RunPhysical(datain)
@AcquirePLCMem()
@WritePLCMem(dataout)
@ReleasePLCMem()
@AcquirePLCMem()
@RunTCC()
@ReleasePLCMem()
tstep ← tstep + TIMESTEP

tsim ← tsim + tstep

B. Maximal Coupling Algorithm

The Maximal Coupling Algorithm (MaCA) ensures that
for each time step the shared resource is acquired and
released only once. This means that the thread running the
MaCA will only need to wait once to acquire the shared
resource, after which it can run the model as many times
as needed to reduce the deviation. In contrast, the thread
running the MiCA must wait for the resource to become
available again, thus accumulating more deviations after
each release.

As shown in Algorithm 2, the PLC memory resource
is acquired only once, before the second while structure,
and is released after the execution of the same structure.
With this approach, the algorithm can not be blocked by the
thread executing calls received from LCCs while reading and
writing the PLC memory. In the next section we show that
although minor, the changes in the algorithm have a major
effect on the deviation.

Algorithm 2: Maximal Coupling Algorithm - MaCA

begin
tsim ← @GetSysT ime()
while FOREV ER do

tdiff ← @GetSysT ime()− tsim
if tdiff ≥ TIMESTEP then

tstep ← TIMESTEP
@AcquirePLCMem()
while tdiff > tstep do

datain ← @ReadPLCMem()
dataout ← @RunPhysical(datain)
@WritePLCMem(dataout)
@RunTCC()
tstep ← tstep + TIMESTEP

@ReleasePLCMem()
tsim ← tsim + tstep

V. PERFORMANCE EVALUATION

The prototype of the proposed framework was devel-
oped and evaluated in the Joint Research Centre’s (JRC)
Experimental Platform for Internet Contingencies (EPIC)
laboratory. The Emulab testbed includes nodes with the
following configuration: FreeBSD OS 8, AMD Athlon Dual
Core CPU at 2.3GHz and 4GB of RAM. In total, the
experimental setup consisted of 8 hosts, 1 for running the
SC unit, 1 for running the Master unit and 6 other hosts to
run at most 100 R-PLC units (depending on the setup of
the experiment). The previously presented algorithms have
been implemented in the SC unit. Each R-PLC unit issues a
write operation in each time step. Through our experiments
we used the model of a Boiling Water Power Plant [11].

The measured deviation for the system using a MiCA
is shown in Figure 2. For up to 10 PLCs (i.e. LCCs) the
deviation increases up to a 1ms time step, after which it de-
creases down to 0.0021ms (for 100 LCCs). The explanation
for the increasing deviation is that larger time steps lead to a
larger number of R-PLC requests received in one time step.
For time steps larger than 1ms the number of simultaneous
accesses to the PLC memory decreases, thus the deviation
is also decreased. For more than 10 LCCs and time steps
smaller than 100ms, the deviation accumulates and exceeds
in time 1s (i.e. after only a few seconds), highlighted with a
dashed line. In these cases the system becomes unusable, as
the MiCA tries to decrease the deviation by subsequently
acquiring and releasing the shared resource. After each
release operation the R-PLC units acquire the resource and
block the thread running the MiCA when it tries to acquire
it again. Nevertheless, the system is able to maintain a
deviation smaller than 0.5ms for up to 20 LCCs, which is
not a negligible performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.3 0.5 0.7 1 10 100 500 1000

D
e

vi
at

io
n

 (
m

s)

Time step (ms)

1 LCC

5 LCC

10 LCC

20 LCC

30 LCC

40 LCC

70 LCC

100 LCC

Figure 2: Deviation for MiCA

The deviation for a system using a MaCA is shown
in Figure 3. Similar to the previous algorithm, the results
show that the deviation increases up to a 1ms time step,
after which it decreases down to 0.0022ms (for 100 LCCs).
However, in this case there is a clear improvement for all
series, as the accumulation for the deviation is completely
eliminated. Although the deviation increases up to 34ms (for
100 LCCs), with the MaCA the system is now able to run
with even the extreme case of 100 LCCs. As a result, by
simply increasing the size of the critical section we are able
to decrease the deviation up to 30 times (i.e. more than
1000ms for the MiCA and a maximum of 34ms for the
MaCA).

0

5

10

15

20

25

30

35

0.1 0.3 0.5 0.7 1 10 100 500 1000

D
e

vi
at

io
n

 (
m

s)

Time step (ms)

1 LCC
5 LCC
10 LCC
20 LCC
30 LCC
40 LCC
70 LCC
100 LCC

0

0.2

0.4

0.6

0.8

1

1.2

0
.1

0
.3

0
.5

0
.7 1

1
0

1
0

0

5
0

0

1
0

00

D
e

vi
at

io
n

 (
m

s)

Time step (ms)

1 LCC
5 LCC
10 LCC
20 LCC
30 LCC

Figure 3: Deviation for MaCA

Another parameter that illustrates the impact of MaCA is
the average deviation given as a percentage from the value of
the time step. In Figure 4 we compare this effect for up to 30
LCCs and a maximum deviation of 1s for MiCA, although
this accumulates in time to larger values. As expected, for
the majority of cases a system with MaCA shows a much
lower deviation percentage than a system using MiCA. The
two exceptions (i.e. for 0.1ms and 10ms) do not show major
differences from MiCA, if we consider that in the first case
the value for MiCA could be even larger (we assumed a 1s
deviation) and for the second case the difference is only of
0.45%. The execution of TCCs for both algorithms does not
introduce any additional deviations to the ones generated by
task switchings. We measured a maximum deviation of 80µs
for 100 TCCs with 0 LCCs. Due to space considerations and
the fact that TCCs do not have a major effect on deviations

0

50

100

150

200

250

300

0.1 0.3 0.5 0.7 1 10 100 500 1000

A
ve

ra
ge

 d
e

vi
at

io
n

 f
ro

m
 t

im
e

 s
te

p
 (

%
)

Time step(ms)

MiCA MaCA

0

0.1

0.2

0.3

0.4

0.5

0.6

10 100 500 1000

MiCA MaCA

Figure 4: Average deviation percentage from time step

we do not provide a graphical representation for this setting.
Although the changes introduced in the MiCA reduce the

deviation, these have an opposite effect on the number of
LCCs that manage to read / write the remote PLC memory
in each time step. With smaller time steps the number of
simultaneous requests to access the PLC memory grows
rapidly, also leading to missed operations, i.e. operations that
could not be executed in the current time step. The term miss
rate is used to denote the percentage of missed read/write
operations by LCCs in each time step. By missing certain
values, LCCs can not react to the changes of the model.

Although TCCs will not miss any values generated by
the model (as TCCs run sequentially with the model), this
is not the case for LCCs. The causes for this are: (i)
execution time is not synchronized between units, (ii) nodes
are running multitasking OSs, and (iii) there is a networking
infrastructure that introduces additional delays. The results
given in Figure 5 show that for time steps smaller than 10ms
there is an average miss rate above 80% for both algorithms.
However, the miss rate decreases significantly for time steps
above 10ms and reaches zero for 100ms. By comparing the
miss rate for the two algorithms we notice only a slight
difference of 1.48% increase for the MaCA. Nevertheless, if
we consider that the second algorithm provides a 30 times
improved deviation, we can clearly state that the slight loss
of 1.48% miss rate is negligible. On the other hand, if a
system is highly sensitive in terms of miss rates, it can
still implement the MiCA with the restriction that it can
not include more than 10 PLCs.

0

10

20

30

40

50

60

70

80

90

100

0.1 0.3 0.5 0.7 1 10 100 500 1000

M
is

se
d

 r
e

ad
 /

 w
ri

te
 (

%
)

Time step (ms)

MiCA MaCA

Figure 5: Average miss rate

VI. CONCLUDING REMARKS

This paper presents a new framework for the security
analysis of NICS following a hybrid architecture that uses

an emulation testbed to recreate cyber components such
as PLCs and SCADA Masters and software simulation for
capturing the physical processes. One of the main contribu-
tion of the paper is the analysis of performance differences
that are introduced by the algorithms that perform the
coupling of soft real time simulation with real components
of an emulation testbed. The paper proposes two algorithms
for implementing soft real-time simulation by coupling the
simulation time to system time. The analysis of the pro-
posed algorithms shows that resource sharing between the
two environments (i.e. emulated and simulated) is a major
concern and future algorithms should also consider a proper
analysis of critical sections. As future work we intend to
use the proposed framework for studying the propagation of
perturbations in cyber-physical environments.

REFERENCES

[1] I. N. Fovino, A. Carcano, M. Masera, and A. Trombetta,
“An experimental investigation of malware attacks on SCADA
systems,” IJCIP, Vol. 2, No. 4, pp. 139–145, 2009.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An
integrated experimental environment for distributed systems
and networks,” Proc. of the 5th Symposium on OS Design
and Implementation, USA, pp. 255–270, 2002.

[3] M. Corti, “Approximating the Worst-Case Execution of Soft
Real-Time Applications,” PhD Thesis, Swiss Federal Institute
of Technology Zurich, Doctoral Thesis ETH No. 15927, 2005.

[4] W. Chunlei, F. Lan, and D. Yiqi, “A Simulation Environment
for SCADA Security Analysis and Assessment,” Proc. of
2010 International Conference on Measuring Technology and
Mechatronics Automation, China, pp. 342–347, 2010.

[5] C. Queiroz, A. Mahmood, J. Hu, Z. Tari, and X. Yu, “Building
a SCADA Security Testbed,” Proc. of the International Con-
ference on Network and System Security, pp. 357–364, 2009.

[6] R. Chabukswar, B. Sinopoli, G. Karsai, A. Giani, H. Neema,
and A. Davis, “Simulation of Network Attacks on SCADA
Systems,” Workshop on Secure Control Systems, 2010.

[7] S. Neema, T. Bapty, X. Koutsoukos, H. Neema, J. Sztipanovits,
and G. Karsai, “Model Based Integration and Experimentation
of Information Fusion and C2 Systems,” Proc. of 12th Confer-
ence on Information Fusion, USA, pp. 1958–1965, 2009.

[8] J. O. Calvin and R. Weatherly, “An introduction to the high
level architecture (HLA) runtime infrastructure (RTI),” Proc.
of the 14th Workshop on Standards for the Interoperability of
Defence Simulations, Orlando, USA, pp. 705–715, 1996.

[9] S. Brandt, G. Nutt, T. Berk, and M. Humphrey, “Soft real-
time application execution with dynamic quality of service
assurance,” Proc. 6th Int. Workshop on Quality of Service,
USA, pp. 154–163, 1998.

[10] J. Tromp, D. Komatitsch, V. Hjörleifsdóttir, Q. Liu, H. Zhu,
D. Peter, E. Bozdag, D. McRitchie, P. Friberg, C. Trabant,
and A. Hutko, “Near real-time simulations of global CMT
earthquakes,” Geophysical Journal International, Vol. 183, pp.
381-389, 2010.

[11] R. D. Bell and K. J. Åström, “Dynamic models for boiler-
turbine alternator units: data logs and parameter estimation for
a 160MW unit,” Lundt Institute of Technology, Sweden, Report
TFRT–3192, 1987.

