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Abstract

Although many studies address the security of Networked Industrial Control Systems (NICS), today we

still lack an efficient way to conduct scientific experiments that measure the impact of attacks against

both the physical and the cyber parts of these systems. This paper presents an innovative framework

for an experimentation environment that can reproduce concurrently physical and cyber systems. The

proposed approach uses an emulation testbed based on Emulab to recreate cyber components and a real-time

simulator, based on Simulink, to recreate physical processes. The main novelty of the proposed framework

is that it provides a set of experimental capabilities that are missing from other approaches, e.g. safe

experimentation with real malware, flexibility to use different physical processes. The feasibility of the

approach is confirmed by the development of a fully functional prototype, while its applicability is proven

through two case studies of industrial systems from the electrical and chemical domain.
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1. Introduction

Modern Critical Infrastructures (CIs), e.g. power plants, water plants and smart grids, rely on Informa-

tion and Communications Technologies (ICT) for their operation since ICT can lead to cost reduction as

well as greater efficiency, flexibility and interoperability between components. In the past CIs were isolated

environments and used proprietary hardware and protocols, limiting thus the threats that could affect them.

Nowadays CIs, or more specifically Networked Industrial Control Systems (NICS), are exposed to significant

cyber-threats; a fact that has been highlighted by many studies on the security of Supervisory Control And

Data Acquisition (SCADA) systems [1, 2, 3]. For example, the recently reported Stuxnet worm [4] is the

first malware specifically designed to attack NICS. Its ability to reprogram the logic of control hardware in

order to alter the operation of industrial processes demonstrated how powerful such threats can be; it served
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as a wakeup call for the international security community. Stuxnet raised many open questions, but most

importantly it highlighted the lack of an efficient scientific approach to conduct experiments that measure

the impact of cyber threats against both the physical and the cyber parts of CIs.

This paper addresses exactly this gap and proposes a novel architecture for experimenting with NICS

that is in between the two extremes of pure simulation and experimentation with only real components.

The proposed framework uses simulation for the physical components and an emulation testbed based on

Emulab [5, 6] in order to recreate the cyber part of NICS, e.g. SCADA servers, corporate network. The

models of the physical systems are developed in Matlab Simulink from which the corresponding ’C’ code is

generated using Matlab Real Time Workshop. The generated code is then executed in real-time and is able

to interact with the real components of the emulation testbed.

The main novelty of the proposed framework is that it combines the Emulab testbed with typical NICS

components and Simulink models in order to provide a set of key functionalities that are missing from related

techniques [7, 8, 9, 10, 11, 12, 13, 14]. As the Emulab testbed was specifically designed to provide capabilities

for advanced networking experimentation, it already includes most of the functionalities required by our

framework (see Table 2), e.g. event injection, experiment automation, separated experimental and control

panes. Although these satisfy the requirements of a cyber security experimentation environment, they do

not satisfy all the requirements of a cyber-physical experimentation environment that would enable security

experimentation with NICS. Therefore, the proposed framework extends the previous list of functionalities as

it supports: experimentation with a wide range of physical processes, typical NICS components, use/testing

of real malware/SCADA software, safe resilience/security studies, and high cyber-layer fidelity. Most of

the previously mentioned functionalities are missing from related approaches that employ real cyber and

simulated physical components [12, 14], as shown later in this paper. On the other hand, approaches that

rely on simulated cyber and physical components [11, 10] are less expensive and most of them include several

functionalities among the previously mentioned. However, they do not support key functionalities that would

enable experimentation with real malware/SCADA software. Finally, simulated cyber components, e.g. in

NS-2, might model normal operations, but they fail to capture the complexity of real components, such as

complex interactions between heterogeneous software/malware and hardware [15].

The results concerning the performance of the proposed framework show that it can enable experimenta-

tion with complex physical processes ranging from simple power plants to complex power grids. Moreover,

a series of performance evaluation experiments show that the framework can scale up and accurately recre-

ate large NICS, e.g. having up to 100 Programmable Logic Controllers (PLCs). The applicability of the

proposed framework is proven with two case studies. The first one includes an analysis of the effect that a

Stuxnet-like [4] malware would have on a power plant [16], while the second study focuses on the effect that

network conditions have on the impact of cyber attacks targeting a chemical plant [17].

The paper is structured as follows. After an overview of related work in Section 2, the requirements
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Table 1: Terms & Abbreviations

AAA Authentication, Authorization and Accounting

CI Critical Infrastructures

ICT Information and Communications Technologies

L-PLC Local Programmable Logical Controller

LCC Loosely Coupled Code

NICS Networked Industrial Control Systems

OPC Object linking and embedding for Process Control

OS Operating System

PLC Programmable Logical Controller

R-PLC Remote Programmable Logical Controller

SC Simulation Core

SCADA Supervisory Control And Data Acquisition

SDL Shut Down Limit

SDT Shut Down Time

TCC Tightly Coupled Code

for building a new NICS security experimentation framework are discussed in Section 3. This is followed

by a detailed presentation of the proposed framework in Section 4, by a comparison to state of the art

approaches in Section 5 and by performance evaluation results in Section 6. The two case studies showing

the applicability of the proposed framework are presented in Section 7 and the paper concludes in Section

8. A list of terms & abbreviations is given in Table 1.

2. Related Work

The analysis of security & resilience characteristics of NICS is challenging because such systems include

elements that interact in both the physical and the cyber domains. The approaches found in the literature

for the study of cyber and physical systems vary considerably regarding the use of simulators and real

components within experiments. This section provides a brief presentation of the most relevant ones.

An approach that uses real components for the physical parts of NICS and partly simulated ones for

the cyber parts was proposed by Chunlei, et al. [7]. This approach uses a real OPC (Object linking and

embedding for Process Control) server, the NS-2 network simulator, combined with real PLCs and field

devices to analyze NICS. In this approach the only simulated element is the enterprise network, while all

the other components, e.g. servers, PLCs, are real. Although from one point of view such a testbed would
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provide reliable experimental data, since almost everything is real, it would be hardly able to support tests

on large infrastructures such as the process system of a chemical installation, because that would require

a complete industrial system to experiment with. Nai Fovino, et al. [8] went also in this direction, by

developing a protected environment for studying the cyber vulnerabilities of power plant control systems.

The core of this environment is a real industrial system able to reproduce all the physical dynamics of a real

power plant. However, the high fidelity of this testing environment is counterbalanced by its poor flexibility

and the high cost of maintenance of a similar architecture. Another approach that uses real physical devices

was proposed by Queiroz, et al. [9]. In this case only the sensors and actuators are real physical devices, while

the remaining components such as PLCs, and the communications protocols between them are implemented

as OMNeT++ modules. Compared to the these approaches, in the proposed framework we use simulation

for the physical layer in order to enable disruptive security/resilience studies on NICS. As already stated,

such studies are not always possible with the previous approaches.

Other researchers focused on simulating both SCADA and field devices. For example, Chabukswar, et

al. [10] used the Command and Control WindTunnel [18] multi-model simulation environment to enable

the interaction between various simulation engines. The authors used OMNeT++ to simulate the network

and Matlab Simulink to build and run the physical process model. With this approach, the analysis of

cyber-physical effects caused by real malware is not a trivial task, as it requires a detailed description of

all ICT components. Furthermore, it might also need a detailed knowledge on the malware dynamics, that

is not always available. In the same category we find the work of Hopkinson, et al. [11], in which power

system simulators were coupled together with the NS-2 simulator. This approach suffers from the same

disadvantages as the solution proposed by Chabukswar, et al., that we overcome in the proposed framework

by employing real components in the cyber layer.

There are also approaches that do not focus on entire NICS, but only on specific components. For

instance, Davis, et al. [12] used PowerWorld [19] to model an entire power grid and to run it in real-time. In

this approach the PowerWorld server is connected to a proxy and uses the Modbus protocol to communicate

with client applications. Researchers interact with the PowerWorld server through a visual interface that

allows them to introduce disturbances into the network and to observe the effects. Although it includes a

real network with real PCs and a simulator for physical components, this approach does not provide typical

units such as PLCs and SCADA Masters, that are key components within NICS. In the same category

we find the work of Hiyama and Ueno [13] that employed Simulink to model physical systems and Matlab

Real Time Workshop to run the model in real-time. Although Hiyama and Ueno did not focus on all the

components of NICS, their work shows that Matlab can be an effective tool to model and run physical

processes in real-time. Finally, we mention the solution proposed by McDonald, et al. [14], in which the

physical layer was simulated with the PowerWorld server, while the cyber layer included both simulated and

real components. This approach is similar to the one proposed in this paper in the sense that it simulates
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the physical layer and uses real components for the cyber layer. On the other hand, the solution proposed

by McDonald, et al. does not support a wide variety of physical processes and is constrained on Power

Systems. Moreover, the framework proposed in this paper includes real networks and automated techniques

for managing experiments, that are missing from McDonald’s approach.

The present work builds on the advantages of the previously mentioned methods. For the physical part,

instead of using real components as was the case of [7], [8] and [9], it uses simulation. This provides an

efficient, safe and low-cost approach with fast and accurate analysis capabilities. For the cyber part of NICS

this work adopted an emulation approach based on Emulab [5, 6]. This approach is well-established in the

field of cyber security [20] and was chosen in order to overcome the major difficulties that rise while trying

to simulate how ICT components behave under attacks or failures.

3. Requirements Analysis

In this section we analyze the requirements behind the design of a new NICS security experimentation

framework. We start out with the description of a typical NICS architecture and we continue with the

requirements for building a cyber-physical security experimentation framework.

3.1. Architecture of a Typical Networked Industrial Control System

Modern NICS architectures have two different control layers: (i) the physical layer, which comprises

actuators, sensors and hardware devices that physically perform the actions on the system, e.g. open a

valve; and (ii) the cyber layer, which comprises all the information and communications devices together

with their software that acquire data, elaborate low-level process strategies and deliver the commands to

the physical layer. The cyber layer typically uses SCADA protocols, e.g. Modbus, to control and manage

an industrial installation. The entire architecture can be viewed as a “distributed control system” spread

among two networks: the control network and the process network. The process network usually hosts the

SCADA servers (also known as SCADA masters), human-machine interfaces, and domain controllers. The

control network hosts all the devices that on one side control the actuators and sensors of the physical layer

and on the other side provide the control interface to the process network. A typical control network is

composed of a mesh of PLCs (Programmable Logic Controllers), as shown in Figure 1. From an operational

point of view, PLCs receive data from the physical layer, elaborate a local actuation strategy, and send

commands to the actuators. PLCs also provide the data received from the physical layer to the SCADA

servers (masters) in the process network and eventually execute the commands that they receive.

3.2. Analysis of the Required Functionalities

Ideally, an experimental framework for NICS security research would support the execution of complex,

large scale and disruptive experiments using rigorous scientific methods. The implemented functionalities
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Figure 1: Typical architecture of a Networked Industrial Control System

should include not only typical NICS components, but should also cover capabilities that facilitate the

experimentation process. These capabilities are specific to Internet experimentation testbeds and include a

wide range of aspects such as control of the experiment’s environment, repeatable experiments, experiment

automation, and secure remote access, if needed. The complete list of required functionalities is provided

in Table 2. For a more detailed presentation of Internet security testbed-related functionalities the reader

should consult our previous work [21]. A presentation of the extended functionalities follows:

• Support a wide range of physical processes. A key requirement of the proposed framework is to

support more than one type of physical process. That is, the framework must include capabilities to

enable experimentation with different CIs ranging from power systems, to chemical systems and even

hydraulic systems. In practice it is not unusual to find physical installations with mixed processes.

• Support typical NICS components. As the main goal of the framework is to enable experimentation

with NICS, it must reproduce the functionalities of typical NICS. These include components such as

PLCs and Master units, but also include industrial protocols such as Modbus, DNP3, or Profibus.

• Support real malware/SCADA software. Security experiments usually involve the presence of an ad-

versary that employs malicious software to reach his/her goals. In this sense the framework should

facilitate experimentation with real malware and SCADA software in order to recreate a real environ-

ment as faithfully as possible.

• Support high fidelity cyber/physical layers. The proposed NICS security experimentation framework

will be applied to a wide range of security studies, that could also include the development and
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Table 2: Complete set of required functionalities for cyber-physical experimentation

ID Functionality

S
p
ec
ifi
c
to

N
IC

S F1 Support a wide range of physical processes

F2 Support typical NICS components

F3 Support real malware/SCADA software

F4 Support high fidelity cyber/physical layers

F5 Support safe security/resilience experiments

S
p
ec
ifi
c
to

ex
p
er
im

en
t
m
an

ag
em

en
t

F6 Support control of the experiment’s environment

F7 Support experiment clock and event scheduling

F8 Support separate control, measurement and experiment planes

F9 Support experiment description and data storing

F10 Support repeatable experiments

F11 Support experiment automation and rapid reconfiguration

F12 Support extensibility in order to adapt to future needs and requirements

F13 Support heterogeneity of technologies

F14 Support clean experiment reconfiguration

F15 Support monitoring of resources

F16 Support remote access

F17 Support Authentication, Authorization and Accounting (AAA)

validation of countermeasures against cyber-physical attacks. Consequently, it must reproduce as

accurately as possible real scenarios and architectures.

• Support safe security/resilience experiments. A security experimentation framework must provide the

ability to conduct security/resilience experiments in which malware could cause unpredictable effects

to physical processes. Therefore, the experimentation framework must provide the ability to conduct

disruptive experiments on physical processes in a safe manner.

4. Architecture of the Proposed Framework

This section presents a new framework for conducting security experiments on NICS. Our presenta-

tion starts with an architectural overview and continues with a more detailed discussion on the proposed

experimentation framework.

7



4.1. Overview of the Proposed Experimentation Framework

In order to support the functionalities listed in Table 2 the architecture of the proposed framework

employs the Emulab-based testbed to recreate the control and process network of NICS and a software

simulation to reproduce the physical processes. The argument for using emulation for the cyber components

is that the study of the security and resilience of computer networks would require the simulation of all the

failure related functions, behaviors and states, most of which are unknown in principle. On the other hand

software simulation is a very reasonable approach for the physical layer due to small costs, the existence of

accurate models and the ability to conduct experiments in a safe environment.

The architecture, as shown in Figure 2, clearly distinguishes three layers: the cyber layer, the physical

layer and a link layer in between. The cyber layer includes regular ICT components used in SCADA systems,

while the physical layer provides the simulation of physical devices. The link layer provides the glue between

the two layers through the use of a shared memory region.

IP: 192.168.1.2

PLC

MEM

Tight
coupling

Physical
Models

PLC

MEM

IP: 192.168.1.1

R-PLC
Unit

Master
Unit

MEM

Read/Write

Physical LayerCyber-Physical
Link Layer

Cyber Layer

SC Unit

Loose
coupling

PLC code

PLC code

Tight
coupling

MEM

Read/Write

R-PLC
Unit

MEM

Read/Write

Emulab
testbed

IP: 192.168.1.3

IP: 192.168.1.4

Figure 2: Architectural overview of the proposed framework

The physical layer is recreated through a real-time simulator that runs on a server and executes the

model of a physical system. The simulator’s execution time is strongly coupled to the timing service of

the underlying operating system (OS). As the OS uses multitasking, achieving hard real-time is difficult

without the use of kernel drivers. However, soft real-time is achieved by allowing a certain deviation from

the OS clock. Throughout the paper the term time step is used to denote the time between two successive

executions of the physical model in the simulator.

The cyber layer is recreated by an emulation testbed that uses the Emulab architecture and software [5]

to automatically and dynamically map physical components, e.g. servers, switches, to a virtual topology.
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In other words the Emulab software configures the physical topology in a way that it emulates the virtual

topology as accurately as possible [6]. Besides the process network, the cyber layer also includes the control

logic code, that in the real world is implemented by PLCs. In the proposed approach the control code can

be run sequentially or in parallel to the physical model. In the sequential case, a tightly coupled code (TCC)

is used, i.e. code that is running in the same memory space with the model. In the parallel case a loosely

coupled code (LCC) is used, i.e. code that is running in another address space, possibly on another host.

The main advantage of TCCs is that these do not miss values generated by the model between executions.

On the other hand, LCCs allow running PLC code remotely, to inject (malicious) code without stopping

execution of the model, and to run more complex PLC emulators. As control code is implemented within

TCCs and LCCs, throughout the paper these terms are used to denote PLCs.

The cyber-physical layer incorporates the PLC memory and the communications interfaces that glue

together the other two layers. The PLC memory is seen as a set of registers typical to PLCs and provides

the link to the inputs and outputs of the physical model, e.g. valves and sensors.

4.2. Detailed Architectural Description

As already mentioned, the proposed architecture uses simulation for the physical layer and an emulation

testbed for the cyber layer. The simulated physical process model is run in soft real-time but is open for

interaction with other components, e.g. PLCs, by providing access to model inputs, e.g. valves, and outputs,

e.g. sensors. As shown in Figure 2, the simulation of the process model is implemented in the Simulation

Core (SC) unit. This unit links the cyber and physical layers through a synchronized memory region that

maps each input and output of the model to a set of memory registers. Another feature of the SC unit

is the support for running TCCs sequentially with the process models, thus emulating the behavior of real

PLCs that are able to react to events without missing any values generated by the model. As TCCs run

sequentially with the model, their reaction time depends on the execution time of the model and on the

chosen time step, as defined by human operators.

Although TCCs enable running emulated PLC code they: (i) lack the flexibility required for injecting

new (malicious) code; and (ii) lack the extensibility in order to support more complex PLC emulators in the

future. For this reason the framework foresees the Remote PLC (R-PLC) unit. R-PLCs run emulated PLC

code remotely and interact with the SC through a set of communications modules. In addition, R-PLC units

implement standard SCADA protocols, e.g. Modbus, that enable Master units to interact with the control

network. The main role of the Master unit is to take global decisions based on values received from sensors

through R-PLC units. Their decisions are translated to commands sent to R-PLC units and thereafter to

the actuators of the physical model. In the remaining of this subsection we provide a detailed description

of the framework’s NICS components (see Figure 3).

SC Unit. The main role of the SC unit is to provide a soft real-time execution of TCCs and physical
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Figure 3: Modular architecture of NICS components within the proposed framework

models, synchronized with the clock of the OS. At the same time the SC unit provides the glue between

the cyber and the physical layers. The most important modules of the SC unit are: Local-PLC (L-PLC),

Remoting Handler and Core. The L-PLC module incorporates the PLC memory, e.g. digital input registers,

used as the glue between the cyber and physical layers and the TCC runner module. The Remoting Handler

module handles the communications between the L-PLC modules and the local RPC system. The Core

module ensures the exchange of data between modules and the execution of the core timer, providing at the

same time a soft real-time execution of the physical model.

R-PLC Unit. The main role of the R-PLC unit is to run LCC code and to provide a Modbus interface

for accessing the physical process model. Its main modules include: the Remoting Handler module that

implements the communications with the SC unit; the LCC Runner module that runs the LCC; and the

Modbus Handler module that implements the Modbus protocol.

Master Unit. The main role of the Master unit is to implement a global decision algorithm based on

the sensor values received from the R-PLC units. Such algorithms are implemented within the Decision

Algorithm module, while the Modbus Handler module enables communications with the R-PLC unit.

4.3. Implementation Details

Prototypes of SC, R-PLC and Master units have been developed in C# (Windows) and have been ported

and tested on Unix-based systems (FreeBSD, Fedora and Ubuntu) with the help of the Mono platform. The

implementation allows TCCs to be provided either as C# source files or as binary DLLs, both dynamically

loaded at run-time. At this time, LCCs are written in C# and must be compiled together with the SC unit.

For the physical process simulator we used Matlab Simulink, since it is a general simulation environment

for dynamic and embedded systems and covers a wide variety of physical processes, e.g. power plants, gas

plants. From Simulink models the corresponding ’C’ code is generated using Matlab Real Time Workshop

and is integrated into the framework using an XML configuration file. The communications between SC and

R-PLC units are handled by .NET’s binary implementation of RPC (called remoting) over TCP. Currently,

the communications between the R-PLC and the Master units are handled by Modbus/TCP. However, other

protocols can be added by substituting the Modbus Handler modules.
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5. Comparison to State of the Art

Since the focus of the framework is not on a specific model or simulation, the comparison of numerical

results is beyond the scope of this paper. We consider that the most appropriate and informative way to

confront the different approaches that comprise the state of the art is through the following three perspec-

tives: (i) a qualitative, feature-driven comparison; (ii) a comparison of capital and operational costs; and

(iii) an experimental scenario-based comparison. All these aspects are detailed throughout this section.

5.1. Qualitative Comparison to Related Approaches

As already mentioned in the previous sections, the functionalities provided by the proposed framework

are only partly supported by related approaches. This subsection provides a detailed comparison of the

functionalities found in related approaches to the ones provided by the proposed approach. The comparison

is based on a qualitative evaluation, where High denotes a strong support for a specific functionality while

Low denotes a weak functionality support. In case a specific functionality is completely missing we use the

“–” symbol. In the following analysis approaches are identified by the first author’s surname.

We categorized related approaches based on the use of real or simulated components for the cyber

and the physical layer. In this sense, we identified three categories of cyber layer and two categories of

physical layer implementations. For cyber layer implementations the following approaches were found: only

real components (Nai Fovino [8], Davis [12]); real components combined with simulated ones (Chunlei [7],

Queiroz [9], McDonald [14]); and only simulated components (Chabukswar [10], Hopkinson [11]). On the

other hand, for physical layer implementations we found the following approaches: only real components

(Nai Fovino [8], Chunlei [7], Queiroz [9]); and only simulated components (Davis [12], McDonald [14],

Chabukswar [10], Hopkinson [11]). In McDonald’s approach we found that the physical layer includes

both real and simulated components. However, the presented experiments employed only the PowerWorld

simulation server for conducting disruptive studies on physical processes. Therefore, McDonald’s approach

was included in the category of simulated physical layers. These results are summarized in Table 3.

It can be seen that approaches in which the cyber layer consists exclusively of real components, i.e. Nai

Fovino and Davis, provide few experiment management capabilities. Furthermore, these approaches are

dedicated to specific physical processes and do not enable experimentation with other types of processes.

In contrast, the framework proposed in this paper includes a strong support for a wide range of physical

processes, accompanied by advanced experiment management capabilities.

By combining multiple simulators together with real components within the cyber layer, the number

of provided functionalities increases in the approaches of Chunlei, Queiroz and McDonald. Nevertheless,

compared to the proposed framework, these approaches have several limitations: they are mainly targeted

towards a specific domain, i.e. Power Systems, they have a weak support for real malware/SCADA software,

and they include only a limited set of experiment management functionalities.
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In the context of approaches that use simulators for both cyber and physical layers without any real

components, i.e. Chabukswar and Hopkinson, we see an increase in the number of strongly supported

functionalities. However, these approaches have a limited applicability in the field of cyber security due to

the diversity and complexity of protocols, systems and architectures. Furthermore, both approaches found

in this category do not enable experimentation with real malware/SCADA software, and provide a low cyber

layer fidelity. In contrast, these functionalities are strongly supported in the proposed framework.

Table 3: Functionality comparison to related work (“CR” is real cyber; “CS” is simulated cyber; “PR” is

real physical; “PS” is simulated physical)

CR & PR CR & PS CRS & PR CRS & PS CS & PS

Functionality (see Table 2) Ours [8] [12] [7] [9] [14] [10] [11]

S
p
ec
ifi
c
to

N
IC

S

Power systems H H H L L H H H

Chemical systems H L – L L – H –

Mechanical systems H L – L L – H –

Hydraulic systems H H – L L – H –

Typical NICS H H L H H H H H

Real malware/SCADA H H H L – L – –

Security/resilience studies H L H – – H H H

Cyber layer fidelity H H H L L L L L

Physical layer fidelity L H L H H L L L

S
p
ec
ifi
c
to

ex
p
er
im

en
t
m
an

ag
em

en
t

Environment control H H L L L L H H

Event scheduling H – – L L L H H

Panes separation H – – – – L H H

Storage facilities H L – – – – – –

Repeatable experiments H L – – – L H H

Automation H – – – – L H H

Extensibility H L L L L L H H

Heterogeneity H – H – – L – –

Clean reconfiguration H – L – – L H H

Resource monitoring H L – – – – – –

Remote access H L – – – – – –

AAA H – – – – – – –

Based on this analysis we can clearly state that the proposed framework advances the state of the art
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by providing a wide range of functionalities, that are missing in related approaches. The low fidelity of

the physical layer, that is the main disadvantage of the proposed framework, is counterbalanced by its high

flexibility, and non-existent maintenance costs. Furthermore, with this approach we enable the safe execution

of disruptive security and resilience experiments, that is a key requirement in the analysis of today’s NICS.

5.2. Cost Comparison to Related Approaches

Following this subsection we show that by employing the Emulab testbed the framework’s capital ex-

penses are counterbalanced by its low operational expenses. For this purpose we compare the cost of our

proposal to the cost of an ad-hoc testbed that includes similar NICS-related functionalities to ours, but that

does not provide all the experimentation functionalities available within Emulab. Such an ad-hoc testbed

could be compared to the ones proposed by Davis, et al. [12] and McDonald, et al. [14], in the sense that

both approaches use real components for the cyber layer and simulated components for the physical layer.

Consequently, the results presented in this subsection can be extrapolated to other approaches combining

real cyber layers with simulated physical layers and that do not rely on automated experiment management.

The overall cost of running N experiments with the proposed framework can be expressed as $(γexp) =

$(γproposed) +N ∗ $(γexpsetup), where the $() function is used to estimate the cost of components, γproposed

is the complete framework, γexp denotes N experiments and γexpsetup denotes the man-hours needed to

set up these experiments. In contrast, the overall cost of experimenting with the ad-hoc testbed includes

an additional element N ∗ $(γ′

manage), in which the γ′

manage component denotes the man-hours needed for

managing one experiment, e.g. restoring experiment data. In our approach these aspects are automatically

handled by the Emulab software and therefore their costs are assumed to be considerably smaller.

Next, we provide a brief presentation of estimated capital and operational expenses for the two testbeds.

For more details the reader is asked to consult our previous work [22]. In our estimations we assumed

100 experimental nodes with identical costs in the two testbeds. In terms of capital investments, the

proposed framework needs additional, more expensive components, that include the two Emulab servers

and control/experimental switches compatible with the Emulab software. Based on these assumptions we

estimate the overall experimentation costs (given in EUR) in the two testbeds for N = 100 and N = 300

yearly conducted experiments. As shown in Figure 4 (a) and (b), the number of yearly conducted experiments

clearly influences the overall experimentation costs. For N = 100 and less-expensive experiments, e.g. 300

per experiment, the costs of the ad-hoc testbed exceed the costs of the proposed framework only after 5

years. On the other hand, for more complex experiments, e.g. translated to costs of 800 per experiment,

the high operational costs of the ad-hoc testbed exceed the costs of the proposed framework in less than one

year. The same result is achieved by increasing the number of yearly conducted experiments to N = 300.

These estimations show that for a reduced number of yearly conducted experiments, e.g. N < 100,

and simple experiments, the deployment of the proposed framework might not be feasible. Nevertheless, in

13



practice the exploration of parameters state space, e.g. bandwidth, delays, in only one scenario can increase

the number of yearly conducted experiments to more than 300. Consequently, for the study of such scenarios

the deployment of the proposed framework is highly recommended. Furthermore, the functionalities provided

by Emulab also minimize the number of time-consuming and error-prone configurations done by human

operators. This translates to less hours and unavoidably to less money spent debugging and re-running

experiments in order to correct human errors. These aspects have not been taken into account in the

previous estimations and could further increase the operational costs of the ad-hoc testbed.
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Figure 4: Estimated costs in the proposed framework and an ad-hoc testbed: (a) N=100, and (b) N=300

5.3. Experimental Comparison to Related Approaches

As a final comparison we show that the proposed framework can effectively recreate scenarios similar to

the ones reported by state of the art approaches. More specifically, we recreate the Denial of Service attack

reported in the work of Chabukswar, et al. [10] involving the Tennessee-Eastman chemical process [17] (more

details on this process in Section 7.2). The attack targets routers responsible for the data exchange between

controllers and sensors/actuators. By employing a TCP SYN attack the controller is completely blinded and

is not able to connect to sensors. In our experiment controllers were implemented within the Master Unit,

while sensors were implemented as R-PLC Units. As shown in Figure 5, similarly to the results reported

in [10], we see an increase in the pressure after the attack is started. As soon as the attack is ended, the

controller is able to stabilize the process and brings it back to its normal operating limits. This experimental

comparison confirms once again that the proposed framework is able to recreate complex scenarios that are

similar to the ones reported in state of the art, with the added value discussed in the previous sections.
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Figure 5: Effect of a Denial of Service attack on data routers (similar to the one reported in [10])
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6. Performance Evaluation

The results from this section are provided to researchers in order to guide them in setting the framework’s

parameters in their own experiments. Unfortunately, the description of related approaches [12, 7, 9, 14] does

not include a thorough analysis and researchers must identify on their own the capabilities and limitations

of such approaches. In contrast, this section presents a clear view on the capabilities and limitations of

the proposed framework. For this purpose the implemented prototype was evaluated by measuring three

metrics: resolution, miss rate and deviation. Resolution is the minimal execution step of the physical model

simulator or in other words the minimal value of the time step, i.e. the time between two model executions.

As the model is run sequentially with TCCs, the value of the resolution equals the sum of the execution time

of the model itself and the execution time of TCCs. Beyond the resolution it is also important to measure

the amount of values that are generated by the model and are not received by LCCs (because of network

delays and multitasking OSs). The term miss rate is used to denote the percentage of missed read/write

operations by LCCs in each time step. As the intent of the framework is to provide a soft real-time execution

of the model, it also provides an approximate value for the deviation, i.e. the difference between the model

execution time and the OS clock. As shown in this section, the deviation depends highly on the chosen time

step and the number of LCCs and TCCs present in the system.

The prototype of the proposed framework was developed and evaluated in the Joint Research Centre’s

Experimental Platform for Internet Contingencies (EPIC) laboratory. The Emulab testbed includes nodes

with the following configuration: FreeBSD OS 8, AMD Athlon Dual Core CPU at 2.3GHz and 4GB of RAM.

In total, the experimental setup consisted of 8 hosts, 1 for running the SC unit, 1 for running the Master

unit and 6 other hosts to run at most 100 R-PLC units. The experimental setup also included four Simulink

models: (i) a simplified model of a water purifying plant; (ii) Bell and Åström’s oil-fired power plant [16];

(iii) the Tennessee-Eastman chemical process [17]; and (iv) the IEEE 9bus power grid test system.

6.1. Physical Process Model Execution Time

The execution time of the physical models depends on their dimensions, e.g. number of equations,

mathematical operations. While the execution time of the water plant and Bell and Åström’s models is less
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Table 4: Execution time of different physical process models

Water plant Bell and Åström Tennessee-Eastman IEEE 9bus

Time (ms) 0.0192 0.0233 0.277 0.25
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If-instruction count 

C# Source C# DLL Native DLL

Code execution time – ttcc (ms)

Instr count C# Source C# DLL Native DLL

1 0.0123 0.0065 0.0027

100 0.0126 0.0069 0.0032

300 0.0142 0.0078 0.0042

700 0.0152 0.0091 0.0061

900 0.0157 0.0096 0.0071

1000 0.0161 0.0109 0.0075

Figure 6: Execution time of TCCs as a function of the implementation type and number of instructions

than 0.1ms, the execution time of the Tennessee-Eastman model is 0.277ms, and is caused by the complexity

of the 50 state equations defined within the model. Finally, we measured the execution time of the IEEE

9bus power grid test system that was of 0.25ms, a reasonable value considering that this model includes 3

power generators. These results are depicted in Table 4.

Although the execution time of the physical models included in the performance evaluation was below

0.3ms, it is reasonable to assume that more complex models could run above 1ms or even 1s. In order to

enable real-time execution of such models as well, researchers could increase the computing power of the

host running the SC unit, or if possible, they could optimize or even parallelize the execution of models.

6.2. Resolution

As mentioned earlier in this section, the minimal value of the time step is called resolution, computed

as a sum of the model and TCCs execution time, i.e. RES = tmodel +
∑

i t
i
tcc. The value of ttcc depends

on the type of implementation used for TCCs and the number of if instructions (see Figure 6). As PLC

code commonly consists of a large number of test sequences, e.g. position of a valve, if-then-else statements

(if-instructions) were used to emulate PLC code. The experimental results showed that the C# source

file has the largest execution time as the code is compiled at run-time. In contrast, the native dynamic

library has the smallest execution time as this is a binary compiled for the target platform. However, the

key advantage of using C# source files is that these do not require the presence of development libraries,

changes can be made quickly and experiments can be resumed immediately.
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TCC count 1 Instr 300 Instr 700 Instr 1000 Instr

1 0.025 0.029 0.031 0.032

10 0.032 0.052 0.071 0.085

30 0.052 0.104 0.164 0.206

70 0.113 0.188 0.344 0.445

90 0.140 0.237 0.444 0.569

100 0.143 0.291 0.485 0.638

Figure 7: The computed resolution with the Bell and Åström physical process model

Finally, the resolution was measured for several settings involving up to 100 TCCs and code sizes ranging

from 1 to 1000 if-instructions. The following results correspond to the Bell and Åström physical process

model and native DLL-based code. Of course, by using other models or a different implementation type for

TCCs the resolution changes automatically. As expected, the value of the resolution has a linear evolution

that increases with the number of TCCs and the number of if-instructions defined for each TCC. For

instance, in the case of a single TCC containing 1 if-instruction the resolution is 0.025ms and increases up

to 0.143ms for 100 TCCs. On the other hand, in the case of a single TCC containing 1000 if-instructions

the resolution is 0.032ms and increases up to 0.638ms for 100 TCCs. These results are shown in Figure 7.

The presented measurements show that the developed prototype is able to run complex models together

with control logic code provided in the form of TCCs under 0.638ms. The maximal measured value for

the resolution, i.e. 0.638ms, corresponds to the extreme case of 100 TCCs with 1000 if-instructions each.

However, in real scenarios the system does not usually include more than 30 or 50 PLCs, thus resolutions

below 0.3ms are feasible. On the other hand, code optimization techniques could be a viable solution to

reduce the number of instructions defined within each TCC in order to support more TCCs. In case such

techniques are not applicable, the framework provides an alternative to TCCs in the form of LCCs.

6.3. Miss Rate

Although TCCs will not miss any values generated by the model, as TCCs run sequentially with the

model, this is not the case for LCCs. The causes for this are the following: (i) execution time is not synchro-

nized between units; (ii) nodes are running multitasking OSs; and (iii) there is a networking infrastructure

that introduces additional delays. The experimental setup for measuring the average miss rate included

up to 100 LCCs and 9 time steps ranging from 0.1ms to 1s. Each LCC reads the remote memory, runs

1000 if-instructions and finally writes the results back to the remote memory. Figure 8 shows the measured

percentages of missed read/write operations. It can be seen that for time steps smaller than 10ms there is a

miss rate greater than 50% due to network delays and multitasking OSs. However, the miss rate decreases
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Figure 8: Missed read/write percentage
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Step 1 TCC 30 TCCs 70 TCCs 100 TCCs

0.1 0.0049 >1000 >1000 >1000

0.5 0.0031 0.0061 0.0115 0.0157

1 0.0026 0.0043 0.0067 0.00741

100 0.0022 0.0022 0.002 0.0021

1000 0.0015 0.0024 0.002 0.0022

Figure 9: Deviation from the OS clock without LCCs

significantly for time steps above 10ms and reaches zero for 100ms. The reason is that time steps larger

than 100ms are enough to cover network delays and task switchings on multitasking OSs.

As shown by these results, the use of LCCs implies studying the physical model in a time granularity

above 10ms. However, LCCs provide a dynamic approach for running control logic code by enabling the

runtime injection of new (malicious) code without affecting the execution of the simulated physical layer.

Furthermore, LCCs are foreseen as an alternative to TCCs that enable the execution of complex control

logic code and the integration of other PLC emulators, without affecting the value of the resolution.

6.4. Deviation from the OS Clock

The developed prototype keeps the execution time of the model synchronized with the OS clock. As the

underlying OS uses multitasking to support the execution of multiple tasks, the deviation of the execution

time from the OS clock can not be avoided. In this section the deviation is measured for up to 100 LCCs

and TCCs. First, a scenario with zero LCCs is implemented in order to illustrate the effect of TCCs on the

deviation. Second, a scenario with up to 100 LCCs is implemented, thus illustrating the effect of LCCs on

the deviation. Figure 9 shows the measured average deviation for the scenario with zero LCCs and up to 100

TCCs. In the same figure we pointed out with arrowed lines that for a 0.1ms time step and starting with 30

TCCs the deviation increases gradually with the execution and exceeds 1s shortly after the experiment is

started. The reason for this behavior is that the cumulated code execution time exceeds the 0.1ms time step.
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0.1 0.0089 0.0294 0.073 0.0358 0.99 1.54 3.48 4.42

0.5 0.0194 0.0442 0.095 0.193 0.543 1.79 13.3 25.7

1 0.0166 0.0708 0.149 0.247 0.636 1.78 14.6 28.3

100 0.0024 0.0019 0.0023 0.0022 0.002 0.0029 0.0017 0.003

1000 0.001 0.0025 0.0023 0.001 0.0019 0.0015 0.0023 0.002

Figure 10: Deviation from the OS clock without TCCs

Consequently, in such cases the framework can not be used for real-time experimentation and researchers

must take appropriate measures to reduce the overall execution time of TCCs, e.g. increase the time step,

optimize the TCC code, or reduce the number of TCCs. On the other hand, by increasing the time step

above 0.1ms the deviation decreases down to 0.0022ms for 100 TCCs. The explanation of this behavior lies

in the multitasking OS that is able to provide much better timing precision for time values above 1ms.

If the system also includes LCCs, the value of the deviation changes dramatically as the SC unit is not

able to read/write the PLC memory while this is accessed by LCCs (Figure 10). For time steps up to 1ms

the deviation increases gradually due to the fact that larger time steps lead to a lower miss rate (Figure

8) and implicitly to a greater number of accesses to the PLC memory. For time steps larger than 1ms the

number of simultaneous accesses to the PLC memory decreases, thus the deviation is also decreased.

Based on the presented results we can clearly state that researchers can use several parameters in order

to adapt the deviation to their needs. These parameters include the following: time step, TCC code, the

number of TCCs, and the number of LCCs. With these parameters the operation of the framework can be

tuned in such a manner to enable real-time experimentation with low deviations at the same time.

7. Case Studies

The results from the previous section showed that the proposed framework enables experimentation

with complex physical processes, supporting at the same time a large number of PLCs. In this section we

continue the evaluation of the framework, with the presentation of two case studies performed in the EPIC

laboratory. We show that the proposed framework can be applied to experiment with adversaries employing

19



diverse capabilities and it can easily recreate network architectures through Emulab NS scripts. In the first

case study we show the effect of the Stuxnet malware on a Boiling Water Power Plant, while in the second

case study we show the effect of network parameters on cyber attacks targeting a chemical process.

7.1. Case Study 1: The Effect of Stuxnet on a Boiling Water Power Plant

The Stuxnet [4] malware confirmed that industrial systems are vulnerable to cyber threats. According

to the Symantec dossier [4], Stuxnet was most likely designed to disrupt the operation of centrifuges used

in the process of uranium enrichment. The employed method was a repeated acceleration and deceleration

of centrifuges over short periods of time that would eventually lead to their mechanical failure. In this

subsection we present an attack scenario inspired from the behavior of the Stuxnet malware on a Boiling

Water Power Plant model, that was tested in the EPIC laboratory.

7.1.1. Experiment Description

For this experiment we employed the model of Bell and Åström as it includes estimated parameters

from a real power plant. The model is actually that of a 160MW oil-fired electric power plant based on

the Sydsvenska Kraft AB plant in Malmö, Sweden and includes 3 units: a boiler unit, a turbine unit and a

generator unit. In the experimental setup shown in Figure 11 we use 3 PLCs, one PLC for each control valve.

Regular and malicious code is implemented as LCC. The process runs at a typical operating point [23] with

the value of the fuel valve set to 0.34, the value of the steam valve set to 0.69 and the value of the feed water

valve set to 0.433. The Emulab NS script from Figure 11 shows that nodes and network connections are

configured easily with typical NS commands. For instance, the make-lan command creates a new network

for which we can configure parameters such as capacity and delays, without having to configure additional

software. Nodes are also set up from the NS script through commands such as tb-set-node-os in order to

select the OS and tb-set-node-startcmd in order to launch the initialization script of additional software,

e.g. SC unit. In the implemented attack scenario only the PLC controlling the steam valve, i.e. R-PLC1, is

infected. The infection process involves stopping the regular R-PLC1 unit and starting another unit, thus

emulating Stuxnet’s ability to rewrite PLC code. The malicious code repeatedly opens and closes the steam

control valve, with a frequency of 40s, thus giving enough time to the valve to completely open.

7.1.2. Experimental Results

The attack is conducted over a period of 5 minutes with the effects shown in Figure 12. As soon as

the attack is started the pressure increases from 107 kg/cm2 to 114 kg/cm2, while electrical output varies

from 0 to 108MW. Such variations clearly deviate from the normal electrical output and may disrupt other

electrical components, e.g. transformers. The cycling of the steam valve affects not only the pressure and

electrical output but also the water level. The water is affected since the evaporation rate is a function of

the vapor pressure. According to [24], a change of more than 0.25m in the level of water in the boiler leads
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Figure 11: Experimental setup and Emulab NS script for creating the experiment in Case Study 1
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Figure 12: Monitored parameters in Case Study 1: (a) Pressure, (b) Electrical output, and (c) Water level

to alarms and eventually to process failure; consequences that can be expected even in this scenario since

the change is 0.3m. These results show that a single infected PLC running malicious code for a short period

of 5 minutes can severely affect the normal behavior of the physical process. By further assuming that the

attack involves the infection of all three PLCs, the results show even greater variations. In these cases the

pressure increases to 160 kg/cm2 and the water level rises to 0.4m, that is a change of 0.9m. These values

clearly suggest the risk of plant failure.

This study showed that with the proposed framework scientists can recreate a scenario with complex

malware such as the recently reported Stuxnet worm. Such studies could be further extended with a more

thorough analysis on the effects of cyber attacks to physical processes and eventually to the validation of

countermeasures against similar attacks.

7.2. Case Study 2: The Effect of Network Parameters on a Cyber Attack Targeting a Chemical Process

The experiment from this subsection includes a powerful adversary and the Tennessee-Eastman [17]

chemical process. The main goal of the adversary is to cause the process parameters to reach their shut
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Figure 13: Experimental setup and Emulab NS script for creating the experiment in Case Study 2

down limits (SDLs). As pointed out by Cárdenas, et al. [25] attacks targeting the minimum/maximum

value of parameters/control variables are the ones that can damage the process in relatively short time

periods. Such attacks cause the accumulation of products, e.g. steam, by completely opening valves that

feed products into process units, i.e. feed-valves, and by completely closing valves that free products from

the process units, i.e. free-valves. In this scenario the adversary follows the same procedure to force the

industrial process to shut down. The main goal of this case study is to show the effect of network parameters,

e.g. communications delays and packet losses, on cyber attacks targeting industrial processes. Additionally,

this study shows that more complex network architectures and physical processes can be set up easily with

an Emulab NS script similar to the one described in the first case study.

7.2.1. Experiment Description

The complexity of the Tennessee-Eastman (TE) chemical process makes it suitable for a wide range of

topics, including cyber-physical security-related studies [25, 10]. The TE chemical plant is a process with

41 measured parameters and 12 manipulated variables. The architecture of the TE process includes 5 main

units: a two-phase Reactor, a product Condenser, a recycle Compressor, a vapor/liquid Separator and a

product Stripper. More details on the TE process can be found in the original paper by Downs and Vogel

[17]. In order to keep the process within its normal operating limits we used the multi-loop control system

developed by Sozio [26], implemented in 11 PLCs (as TCC code).

The adversary model we employ in this experiment tries to cause a shut down of the physical process

by sending legitimate Modbus packets to PLCs. Identifying the attack vector that could compromise the

system to enable such a scenario is not the main focus of this study. However, the Stuxnet worm [4] together

with other studies [8] showed that such scenarios are possible in real settings. Network delays and packet
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losses were emulated with the Dummynet software, running on the adversary’s and on the compromised

stations within the corporate network. The experimental setting for this attack scenario and the associated

Emulab NS script are depicted in Figure 13. Because of space considerations the provided NS script includes

“...” to denote consequent RPLC identifiers starting from RPLC2 and ending with RPLC10. The studied

communications delays range from 0s to 3s and the studied packet loss rates range from 0% to 10%. For

each parameter we ran one experiment and we recorded the process shut down time (SDT), i.e. the time

that the process is able to run after the attack is started, before shutting down. This value was also used as

a metric of the impact of network parameters on cyber attacks.

7.2.2. Experimental Results

The operation of the TE process for 40h without any disturbances is shown in Figure 14 (a). With the

implemented control loops the process is able to run in a steady-state, as shown by the figure depicting the

behavior of the selected parameter. Without these control loops, the process parameters would reach their

shut down limits (SDLs) after approximately 3.6h [26]. Next, we measured the effect of network delays on

the process SDT. For the full network setting, the effect of delays is insignificant, as up to 0.5s the SDT

does not show any changes. On the other hand, for network delays of 1s the value of the SDT increases to

4.83min, while for delays of 3s the SDT increases to 5.51min. However, such extreme delays can rarely be

measured over the Internet, and even in such cases the impact on the attack is minimal. This behavior is

also depicted in Figure 14 (b). In the following step we analyzed the effect of packet losses on the process

SDT. Packet loss rates of 5% increased the SDT of the full network setting to 5.16min. However, extreme

packet losses of 10% had an insignificant effect on the SDT and increased it to only 5.58min in the same

setting. We can also see this effect in Figure 14 (c).
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Figure 14: Normal operation (a) and effect off communications delays (b) and packet losses (c) on the

Tennessee-Eastman process (SDL – Shut Down Limit, TSP – Target SetPoint)

The main goal of this study was not to be exhaustive in the choice of network parameters, but to prove

that communications delays and packet losses have a minor effect on cyber attacks in which the adversary
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communicates with PLCs. This scenario also confirmed the fact that the proposed framework is suitable for

security studies involving complex cyber-physical systems.

8. Conclusions

Recent security incidents [4] indicate the need for testbeds for conducting security experiments with

NICS. Current approaches suffer either from high operational costs (ad-hoc testbeds) [8, 12] or lack realism

(pure simulators) [10, 11]. This paper overcomes these constraints with a novel framework blending together

an Emulab-based testbed which recreates the industrial ICT components and real-time software simulators

which recreate the physical systems. The experimental results showed that our framework prototype can

efficiently recreate large installations (100 PLCs) and can simulate complex physical systems, e.g. the TE

process, in near real-time, with low deviation (< 1ms) and low miss rate (0%), for simulation steps larger

than 10ms. The proposed framework was analyzed from several perspectives: (i) a qualitative comparison

showed that it provides a set of key functionalities that are missing in related approaches, e.g. supports real

software/malware, enables automated and safe experimentation with NICS; (ii) a comparison of capital and

operational costs showed that the approach is highly cost efficient; and (iii) experimental results confirmed

that the framework can recreate complex scenarios similar to the ones reported in related approaches [10].

Finally, the paper proved through two case studies, one involving attacks in the power sector and another

in the chemical sector, that it clearly advances the state of the art since it allows to recreate a wide range of

security scenarios in a safe and automated manner. As future work we intend to use the proposed framework

to study the newly proposed architectures and protocols for the Smart Grid [27].
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