

AUTOMATED COMPARATIVE PERFORMANCE EVALUATION OF
SECURITY PROTOCOLS

B. Genge, “Petru Maior” University of Tg. – Mureş, Romania

Abstract - We propose a comparative performance evaluation method for security
protocols. We start by constructing a security protocol model where we assign a cost
functions for each cryptographic operation. For each class of cryptographic operations
(e.g. symmetric encryption, asymmetric decryption), we construct a polynomial
function based on an exhaustive performance evaluation of cryptographic
combinations including algorithms and key sizes. The proposed method is validated by
a comparative analysis of 1000 generated protocols and 16 existing security protocols.

Keywords – Security protocols, performance evaluation, OpenSSL, Cryptlib,
Crypto++.

Abstract – Propunem o metodă comparativă de evaluare a performanŃelor
protocoalelor de securitate. Începem cu construirea unui model al protocoalelor de
securitate în cadrul căruia ataşăm funcŃii cost pentru fiecare operaŃie criptografică.
Pentru fiecare asemenea clasă de operaŃii (e.g. criptare simetrică, decriptare
asimetrică), construim o funcŃie polinomială prin evaluarea exhaustivă a tuturor
combinaŃiilor criptografice, printre care se numără algoritmi şi dimensiune a cheilor.
Metoda propusă este validată prin analiza comparativă a 1000 de protocoale generate şi
16 protocoale existente.

Cuvinte cheie – Protocoale de securitate, evaluarea performanŃelor, OpenSSL,
Cryptlib, Crypto++.

 1. Security protocols

Security protocols are “communication protocols dedicated to achieving security
goals” (C.J.F. Cremers and S. Mauw) [1] such as confidentiality, integrity or
availability. Achieving such security goals is made through the use of cryptography.
Designing new protocols is a challenging task if we look at the number of attacks that
have been discovered over the years [2] after the protocols have been published.

However, in the last few years the use of protocol composition [3, 4, 5] has been
successfully applied to create new protocols based on existing [6, 7] or predefined
protocols [3]. The composition process makes use of the informal [6] specification of
security protocols which does not include any implementation-related information such
as selected cryptographic algorithm, key size or encryption rounds. The result of the
composition can have multiple protocols [8] from which the most performant must be
selected. As mentioned earlier, cryptography is an important component of these
protocols. This is why existing performance evaluation methods include several
aspects related to the performance of the algorithms used to implement the protocols.
However, in the composition phase, the cryptographic algorithms used in the
implementation process are unknown. To help the decision process related to the
selection of the most performant security protocol, in the early design phase, we
propose a novel evaluation method that focuses on cryptographic algorithm operations,
available in the informal specification. The informal specification does not include a
formal tool for reasoning on security protocols. In order to achieve our goal, we need
such a tool. We have chosen to use the strand space model [9] as a specification model
because of its simplicity and extensibility. The rest of the paper is structured as
follows. In Section 2 we present an extension of the original strand space used to
model security protocols and we introduce the canonical model where cryptographic
operations are modelled as t-strands having specific classifiers. In Section 3 we model
cryptographic algorithms as polynomial functions. Using the proposed approach, we
present several experimental results in section 4. In Section 5 we relate our work to
others found in the literature. We end with a conclusion in Section 6.

 2. K-strands and t-strands

A strand is a sequence of transmission and reception events used to model protocol
participants. A collection of strands is called a strand space. The strand space model
was introduced by Guttman et all in [9] and extended by the authors with participant
knowledge, specialized basic sets and explicit term construction in [10]. The resulting
model is called a k-strand space. The rest of this section formally defines the k-strand
and k-strand space concepts. By analysing the protocol specifications from the SPORE
library [11] we can conclude that protocol participants communicate by exchanging
terms constructed from elements belonging to the following sets: R, denoting the set of
participant names; N, denoting the set of nonces (i.e. “number once used”); K,
denoting the set of cryptographic keys and M denoting user-defined components. If
required, other sets can be easily added without affecting the other components. The
above-defined basic sets and function names are used in the definition of terms, where
we also introduce constructors for pairing and encryption:

() { } ():: . | | | | | , |
FuncName

=
T

T T T TR N K M ,

where the ‘.’ symbol is used to denote an empty term. We use the symbol ∗T to denote
the set of all subsets of terms. To denote the transmission and reception of terms, we
use signed terms. The occurrence of a term with a positive sign denotes transmission,
while the occurrence of a term with a negative sign denotes reception. The set of

transmission and reception sequences is denoted by()∗±T .

Definition 1. A k-strand (i.e. knowledge strand) is a tuple , ,r sK , where

∗∈K T denotes the knowledge corresponding to the modelled participant, r ∈R

denotes the participant name and ()s
∗∈ ±T denotes the sequence of transmissions and

receptions. A set of k-strands is called a k-strand space.

As opposed to k-strands, in the t-strand model the terms exchanged between t-strands
are based on types constructed from basic typed terms and are called typed terms or
more simply t-terms:

() { }:: . | | , |t t t t FuncName
BasicTT=T T T T .

Definition 2. A t-strand (i.e. typed strand) is a tuple , ,r sc , with ∈c C , r ∈R and

()s
∗∈ ±

t
T . A set of t-strands is called a t-strand space. The set of all t-strand spaces is

denoted by tΣ .

 3. Modelling cryptographic operations

Usually, protocol specifications do not include cryptographic operations such as term
concatenation, encryption or signature generation, which are considered to be
implementation-specific. However, when dealing with the performance evaluation of
these protocols we can not omit such operations because they directly influence the
evaluation process. By using the defined classifiers and typed strands, we can model
cryptographic operations as follows.

Definition 3. Let ∈c C be a classifier. Then the typed strands corresponding to this
classifier generate the following sequences of transmissions and receptions for any

,t tt t′ ∈
t
T :

Encryption. { },t t sk
t t− + , if =

E
c C ;

Decryption. { } ,t tsk
t t− + , if =

D
c C ;

Hash. { },t t h
t t− + , if =

H
c C ;

Public key enc. { },t t pk
t t− + , if =

PK
c C ;

Private key enc. { },t t pvk
t t− + , if =

PVK
c C ;

Key-Gen. k+ , if =
K

c C ;

Nonce-Gen. n+ , if =
N

c C ;

Concatenation. (), , ,t t t tt t t t′ ′− − + , if =
C

c C ;

Split. (), , ,t t t tt t t t′ ′− + + , if =
I

c C .

 (a) (b)

Fig. 1. Execution time of cryptographic operations for: (a) Cryptlib (b) OpenSSL

Using the k-strand model, the operations that must be executed by protocol participants
are extracted and the t-strand model is constructed. The extraction process uses the
knowledge corresponding to each k-strand to identify operations. Thus, terms that are
not in the participant’s knowledge must be generated (i.e. keys, random numbers) or
extracted from encrypted terms which are also located in the knowledge set. In the t-
strand model, the t-nodes responsible for creating new t-terms have a positive sign.
Thus, we assign a cost to each positive t-node found in a t-strand space. The functions
corresponding to each cryptographic operation type have been constructed using an
exhaustive performance analysis of cryptographic algorithms from two well-known
cryptographic libraries: Cryptlib [13] and OpenSSL [14]. For example, the
performance of symmetric algorithms corresponding to the two cryptographic libraries
is given in figure 1. From our experimental results, we reached the conclusion that
cryptographic algorithm classes can be approximated using the polynomial function:

() 3 2
4 3 2 1f x x x xα α α α= + + + . (1)

For each algorithm class we need to solve the set of equations:

()()

()()

()()

()()

3 2
4 3 2 1

11

3 2
4 3 2 1

12

2 3 2
4 3 2 1

13

3 3 2
4 3 2 1

14

2 0

2 0

2 0

2 0

n

i i i i
i

n

i i i i i
i

n

i i i i i
i

n

i i i i i
i

R
y x x x

R
x y x x x

R
x y x x x

R
x y x x x

α α α α
α

α α α α
α

α α α α
α

α α α α
α

=

=

=

=

∂ = − − + + + =∂

 ∂ = − − + + + =∂


∂ = − − + + + =
∂


∂ = − − + + + =∂

∑

∑

∑

∑

 (2)

Part of the graphical representation of these polynomials is given in figure 2.

 (a) (b)

 (c) (d)

Fig. 2. Graphical representation of the algorithm models: (a) Symmetric encryption (b)
Hash (c) Asymmetric encryption (d) Signature

 4. Experimental results

Based on the calculated models and cryptographic operations, we have generated 1000
security protocol specifications. We have compared the performance of these protocols
to the estimated performance using protocol pairs. As we can see from figure 3, the
estimation strictly follows the measured performance. In some case, the predicted values
do not correspond to the measured ones. These situations are marked with black arrows.
This is because the measured protocol performances are very similar (under 1
milliseconds), which, in reality, does not affect the performance of the implementing
system. As we can also see from figure 4, the estimation error depends on the package
size used to calculate the estimated performance. Because of this, the error decreases in
value as package size grows. We have also provided a comparative performance
evaluation of real security protocols. The experimental results are given in table 2. As
illustrated in table 1, the estimated performances of similar protocols does not
correspond to the measured values, which is illustrated using emphasized text.

Fig. 3. Graphical representation of the predicted and measured protocol performance
pairs

Fig. 4. Average estimation error based on the estimation package size

Table 1. Comparative performace evaluation of protocols from SPORE

S
E

C
-R

P
C

B
A

N
-R

P
C

B
A

N
C

-R
P

C

L
O

W
E

-R
P

C

C
C

IT
T

v1

C
C

IT
T

v1
c

C
C

IT
T

v3

B
A

N
-C

C
IT

T

D
E

N
N

IN
G

-
S

A
C

C
O

L
O

W
E

-
D

E
N

N
IN

G

K
A

O
-

C
H

O
W

v1

K
A

O
-

C
H

O
W

v2

K
E

R
B

E
R

O
S

v5

N
E

E
D

H
-

S
C

H-
P

K

Y
A

H
A

L
O

M

S-RPC - 0.94 1.78 1.78 0.02 0.01 0.01 0.01 0.82 0.6 0.6 0.51 0.37 0.01 0.8

B-RPC 1.06 - 1.89 1.89 0.02 0.01 0.01 0.01 0.87 0.64 0.64 0.54 0.39 0.01 0.85

C-RPC 0.56 0.53 - 1.0 0.01 0.0 0.01 0.01 0.46 0.34 0.34 0.29 0.21 0.01 0.45

L-RPC 0.56 0.53 1.0 - 0.01 0.0 0.01 0.01 0.46 0.34 0.34 0.29 0.21 0.01 0.45

CCv1 46.2 43.5 82.2 82.2 - 0.33 0.41 0.42 38.0 27.9 27.9 23.5 17.0 0.49 37.0

CCv1c 139 131 247 247 3.01 - 1.25 1.28 114 84.1 84.2 70.8 51.3 1.48 111

CCv3 111 105 198 198 2.41 0.8 - 1.02 91.7 67.4 67.4 56.7 41.1 1.19 89.3

B-CC 108 102 193 193 2.35 0.78 0.98 - 89.6 65.8 65.8 55.4 40.1 1.16 87.2

D-S 1.22 1.14 2.16 2.16 0.03 0.01 0.01 0.01 - 0.74 0.74 0.62 0.45 0.01 0.97

L-D-S 1.65 1.56 2.94 2.94 0.04 0.01 0.01 0.02 1.36 - 1.0 0.84 0.61 0.02 1.32

K-Cv1 1.65 1.56 2.94 2.94 0.04 0.01 0.01 0.02 1.36 1.0 - 0.84 0.61 0.02 1.32

K-Cv2 1.96 1.85 3.49 3.49 0.04 0.01 0.02 0.02 1.62 1.19 1.19 - 0.72 0.02 1.57

KERv5 2.71 2.55 4.82 4.82 0.06 0.02 0.02 0.02 2.23 1.64 1.64 1.38 - 0.03 2.17

NS-PK 93.7 88.2 166 166 2.03 0.67 0.84 0.86 77.1 56.6 56.6 47.7 34.5 - 75.0

YAH 1.24 1.18 2.22 2.22 0.03 0.01 0.01 0.01 1.02 0.75 0.75 0.64 0.46 0.01 -

 5. Related work

In the literature we find several papers dealing with the performance evaluation of
protocol implementations [15, 16]. In contrast, only a few papers are dedicated to
constructing a model for the evaluation of security protocol performance [6, 12]. For
completeness, we first mention a few papers that adopted the performance evaluation
of various cryptographic algorithm and security protocol implementations. In [15] and
[16], the performance of cryptographic algorithms is measured as a function of the
total amount of energy consumed by the device on which the algorithm is running. For
evaluating the performance of the WTLS [18] (Wireless Transport Layer Security)
protocol, the authors from [19] measure the time needed to perform connections on a
PDA. Finally, we mention the currently world wide adopted security protocol, TLS
[17] (Transport Layer Security). The performance of TLS has been intensively studied
[20, 21]. The results show that the cryptographic overhead introduced by TLS seriously
affects the performance of regular servers. Because of this, several solutions have been
proposed to improve server performance, from which we mention the distribution of
cryptographic operations among other servers [21] and the use of hardware
accelerators [22]. One of the papers dedicated to modelling the behaviour of protocol
components [12] constructs a parametric mathematical model based on an exhaustive
evaluation process of algorithm implementations. The constructed model does not
address, however, the issue of protocol cryptographic operations executed by
participants. A similar approach to ours is proposed in [6] where cryptographic
operations are detailed and each operation is assigned a symbolic cost. Our approach
differs by the fact that it introduces the concept of size based on term types, as opposed
to instance values used in [6]. In addition, we also model the size of message
components resulting from cryptographic operations, which is not covered in [6].

 6. Conclusion and future work

We have developed a procedure for evaluating the performance of security protocols.
Our proposal is based on a canonical model which eliminates terms specific to protocol
instantiations, leaving only types. The canonical model also includes cryptographic
operations that must be executed by protocol participants in order to construct new
terms. The total cost associated to cryptographic operations denotes the performance of
the analysed security protocol. The novelty of our approach lies in the use of
participant knowledge to construct cryptographic operations, which does not need any

user intervention and provides a minimal effort from participants to create protocol
messages. Another novelty introduced by our approach is the association of typed
terms to symbolic sizes and the modelling of ciphertext size resulting from
cryptographic operations. As future work, we intend to introduce additional
cryptographic operations denoting the verification of received terms. We also intend to
use the proposed performance evaluation method in the composition process, which
has been used as a method for designing new security protocols from existing
protocols. Thus, designers could chose from an early stage the most performant
protocol.

 References

[1] C. Cremers, S. Mauw - Checking secrecy by means of partial order reduction, In S.
Leue and T. Systa, editors, Germany, september 7-12, 2003, revised selected papers
LNCS, Vol. 3466, 2005, Springer.

[2] Gavin Lowe - Some new attacks upon security protocols, In Proceedings of the 9th
Computer Security Foundations Workshop, IEEE Computer Society Press, 1996, pp.
162-169.

[3] Hyun-Jin Choi - Security protocol design by composition, Cambridge University,
UK, Technical report Nr. 657, UCAM-CL-TR-657, ISSN 1476-2986, 2006.

[4] Ran Canetti - Universally composable security: A new paradigm for cryptographic
protocols, 42nd FOCS, 2001, Revised version (2005), available at
eprint.iacr.org/2000/067.

[5] Cas J. F. Cremers - Compositionality of Security Protocols: A Research Agenda,
Electr. Notes Theor. Comput. Sci., 142, pp. 99-110, 2006.

[6] A. Datta, A. Derek, J. C. Mitchell, A. Roy - Protocol Composition Logic (PCL),
Electronic Notes in Theoretical Computer Science Volume 172, 1 April, 2007, pp.
311-358.

[7] S. Andova, Cas J.F. Cremers, K. Gjosteen, S. Mauw, S. Mjolsnes, and S.
Radomirovic - A framework for compositional verification of security protocols,
Elsevier, to appear, 2007.

[8] B. Genge, P. Haller, R. Ovidiu, I. Ignat - Term-based composition of security
protocols, In the Proceeedings of the 16th International Conference on Automation,
Quality and Testing, Robotics, AQTR, 2008, pp. 233-238.

[9] F. Javier Thayer Fabrega, Jonathan C. Herzog, Joshua D. Guttman - Strand spaces:
Proving security protocols correct, Journal of Computer Security 7, 1999, pp. 191-230.

[10] Genge Bela, Iosif Ignat - Verifying the Independence of Security Protocols, IEEE
3rd International Conference on Intelligent Computer Communication and Processing,
Cluj-Napoca, Romania, 2007, pp.155-163.

[11] SPORE, Security Protocol Open Repository, http://www.lsv.ens-cachan.fr/spore.

[12] Phongsak Kiratiwintakorn - Energy efficient security framework for wireless
Local Area Networks, PhD Thesis, University of Pittsburgh, 2005.

[13] Cryptlib Software Distribution, http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
[last access April, 2008].

[14] OpenSSL Software Distribution, http://www.openssl.org/ [last access April 2008].

[15] M. Viredaz and D. Wallach - Power evaluation of a handheld computer: A case
study, Compaq Western Research Lab, Tech. Rep. 2001/1, 2001.

[16] S. Hirani - Energy efficiency of encryption schemes in wireless devices, Master’s
thesis, Telecommunications Program, University of Pittsburgh, Pittsburgh, 2003.

[17] Dierks, T,. Allen, C. - The TLS Protocol, Version 1.0, Request for Comments:
2246, Network Working Group, January 1999.

[18] WAP Forum - Wireless Transport Layer Security Specification Version 1.1, 11.2.,
1999.

[19] Neil Daswani - Cryptographic Execution Time for WTLS Handshakes on Palm OS
Devices, Certicom Public Key Solutions, September 2000.

[20] Cristian Coarfa, Peter Druschel and Dan S. Wallach - Performance Analysis of
TLS Web Servers, ACM Transactions on Computer Systems, 24 (1), 2006, pp. 39-69.

[21] Adam Stubblefield, Aviel D. Rubin, Dan S. Wallach - Managing the Performance
Impact of Web Security, Electronic Commerce Research, No. 5, Springer Science +
Business Media, 2005, pp. 99–116.

[22] D. Dean, T. Berson, M. Franklin, D. Smetters, and M. Spreitzer - Cryptology as a
network service, In Proceedings of the 7th Network and Distributed System Security
Symposium, San Diego, California, Feb. 2001.

