

Abstract — Digital certificates (through the use of public-

key cryptography) provide an entity the power to

authenticate users even when the CA (Certification

Authority) that issued the certificate is not on line. This

authentication mechanism is widely used today in Virtual

Organizations (VOs) to distribute the weight of the

authentication. However, as shown in this paper, the use of

public-key cryptography may dramatically reduce the

performance of a system, and consequently reduce the

performance of the VO if it is used to authenticate users at

every node. Thus, we outline the specifications of a Virtual

Organization, where public-key cryptography is used only

for the initial authentication of nodes. To provide access to

multiple resources in the VO, a Chained Authentication

Model is proposed that makes use of a symmetric-key based

three-party authentication protocol.

Keywords — Distributed Authentication, Protocol

Formalization, Virtual Organizations.

I. INTRODUCTION

In today’s Internet, the possibility of being the subject

of an attack is growing each day. This is why companies
restrict access to their stations by creating Virtual Private
Networks (VPN) or by using proxies and secured
gateways. However, these solutions are static and
represent an authentication and communication
bottleneck (for the protected networks).

This paper deals with a Mobile Virtual Organization
type, where a node may move around, and may access
any other node in the system, previously being
authenticated by a third, trusted party. There have several
proposals for the administration and authentication in
Virtual Organizations ([1]-[2]-[3]-[4]-[13]), but the
systems described consider a global access and
authentication point, meaning that every node will have
to consult a central authority when accepting a
connection from a specific host and each client will need
to have a password with each node it wishes to access.

These assumptions are perfectly reasonable if we
consider systems that are static or protected by physical
devices (routers, proxys) [4]. But today, the mobile world

is emerging and VO’s may accept each day new members
who can offer new services.

Other solutions [20]-[21]-[22]-[23]-[24]-[25]-[26]-[27]
use certificate hierarchies to distribute the weight of the
authentication among Certification Authorities that do not
have to be online for the authentication process to take
place. Although these provide a real-life solution to the
authentication problem in VOs, the performance of the
entire Virtual Organization may dramatically drop if
every user must be authenticated at each node using a
time-consuming public key algorithm.

We propose an organization type having multiple
points of access, where each node, modeled as an agent,
can become a possible authentication point (i.e.
Authenticator). To avoid affecting the performance of the
Virtual Organization (VO), we use public-key
cryptography only at the initial authentication point. For
later authentications we use private-key cryptography and
a third-party authentication protocol so that the system
will be able to handle a large amount of users.

The proposed protocol is formalized and transformed
into CSP specification [15] using the Casper compiler
developed by Gavin Lowe [5].

The paper is structured as follows. Section II shows
how symmetric and asymmetric encryption algorithms
influence multimedia systems, thus, motivating the use of
symmetric-key based authentication in the proposed VO.
In section III we introduce our system, describing VOs in
general, and then specifying the properties of the
proposed Coordinated Mobile Virtual Organization. In
section IV we describe the third-party protocol used in
the process of authentication. We end with a conclusion
and a specification of future work in section V.

II. THE NEED FOR DISTRIBUTED
AUTHENTICATION

A centralized authentication model, where every node

in the system must be able to access information about
every user (through a database link, for example), may
eventually become a bottleneck, leading to the collapse of
the system under it’s own weight. There have been

A Chained Authentication Model for Virtual
Organizations

Genge Bela1, Haller Piroska2,

1 Genge Bela is with the Faculty of Engineering, “Petru Maior”
University of Targu Mures, Romania; bgenge@upm.ro
2 dr. Haller Piroska is with the Faculty of Engineering, “Petru
Maior” University of Targu Mures, Romania; phaller@upm.ro

several proposals made to distribute the weight of the
authentication among system components [13]-[20]-[21]-
[22]-[23]-[24]-[25]-[26]-[27], differentiated by the
component that guarantees the authentication of a
requesting user. Thus, we can identify authentication
models that are based on passwords or certificates.

A. Password-based authentication

The password approach implies that there is a
component of the system that stores the password of the
user, used in the authentication process as a symmetric
key for encrypting the communication channel between
the user and the server. The most representative
authentication model from this category is Kerberos [13],
which uses a Key Distribution Center (KDC) to hold the
user passwords. The KDC issues to clients short-lived
credentials (a Ticket Granting Ticket - TGT), which must
be presented to a Ticket Granting Service (TGS) from
where clients obtain session tickets to access a certain
server.

The major problem of a system that is based on a
password-based authentication is that the password is
used for authenticating by both the user and the server
(considering that symmetric cryptography is used).
Because of this, if someone is able to obtain a password,
it can impersonate the user and the server as well.

B. Certificate-based authentication

Certificates are digital documents signed by a central
Certification Authority (CA) in which all of the system
components trust. A signature is created using an entity’s
private key and it can be verified by using the entity’s
public key. Thus, every component of a system that
possesses a certificate also possesses a public/private key
pair.

A certificate usually contains the name of the authority
that emitted the certificate, the issue and expiration dates,
the name of the entity for which the certificated is issued,
the public key of the entity and possibly other
information (which may be system dependent). All this is
signed using the CA’s private key.

When the certificate-based model is used, system
components can prove their identity by simply signing
information. They can verify a signature by using the
entity’s public key, which is retrieved in a certificate
signed by the CA.

A major problem with using certificate-based
authentication is based on performance, since public key
(asymmetric) cryptography is known to be at least 1000
times slower than secret key (symmetric) cryptography.
Another drawback is the maintenance of the certificate
revocation lists, which must be stored on public servers
that have to be regularly updated.

C. Performance evaluation

To construct a system that uses a certain authentication
model, one must take care when evaluating the security
requirements because security means lesser performance
of the resulting system.

Also, it is important to know if the system should rely
on a password or certificate based authentication because
the problems that result for each implementation must be
treated in a different manner.

The basic question that must be eventually answered is
the following: how does symmetric and asymmetric
cryptography affect the functionality of a system
component? To answer this question, we have tested the
effect of the RSA and AES algorithms on the normal
functioning of a multimedia (audio and video) server.
What we have tested actually was the performance flow
of the server when running in parallel multiple
authentication sequences that made use of the RSA or
AES algorithms.

The test was made using an AMD Athlon XP 1700+
(1.47 GHz) with 256 MB of RAM desktop computer on
which the server was running. We used 50 User Threads
to create a load on the server, and several Cryptographic

Threads that ran one encryption and one decryption of a
1024 bit buffer/second/thread (Figure 1) to simulate
parallel authentication. The 1024 bit buffer simulates a
1024-bit key sent to a user.

Figure 1. Multimedia test-server structure

The frames were dispatched to the User Threads by the

Frame Dispatcher thread. A separate thread (Frame

Counter) was used to count the number of frames that
actually reached to each user thread.

Because the purpose of the test was to reveal the
influence of one ore more authentication sequences on
the functionality of an existing system, we did not use
any encryption on the multimedia channels.

Figure 2. Asymmetric (RSA) encryption effect

on the multimedia server

In Figure 2 we can see just how much does asymmetric
cryptography cost. When running one encryption in
parallel, the performance of the system drops from 3206
frames processed to 3008, for 1024-bit key, and to 2977,
for a 2048-bit key. Thus, the system loses almost 10%
only for one asymmetric encryption/decryption per
second, which is not that critical, if we consider that there
are 50 users logged in. However, a single authentication
sequence may consist of several encryptions/decryptions
[10], thus for one authentication, there would have to be
run two or three encryptions+decryptions/second,
resulting in 20-30% performance loss, which can become
a serious concern for live streaming.

Figure 3 shows the effect of applying symmetric
cryptography (AES algorithm) on the server. In this case,
there is very little variation (±0.093) in the number of
frames sent to users even when running 20 parallel
encryptions.

Figure 3. Symmetric (AES) encryption effect

on the multimedia server

Knowing just how much a single encryption/decryption
affects the performance of a server, we should consider
using public key cryptography only when absolutely
necessary. In addition, when working with multimedia
servers, the authentication of a single user may affect the
streaming of all other users, which in case of audio
streaming is not permitted.

III. COORDINATED MOBILE VIRTUAL
ORGANIZATIONS

A Virtual Organization (VO) is a set of entities

(nodes), that we call agents, each of them having a set of
resources that may be used by a specific client, or other
agent. We consider nodes as being agents because they
are not restricted to one point, they can move from one
node to another to satisfy their goals. Examples of
autonomous agent systems can be found at [1]-[6]-[7]-
[8]. Because of the observations made in section II, the
proposed VO uses an initial public-key based
authentication and multiple subsequent private-key
authentications.

The purpose of this paper is not to answer the question
“why is a VO created?” or “how does it share
resources?”. These questions are covered in detail in [1].
Instead, the questions that may find answers here, look
like “is he safe to join the VO?”, “am I talking to the right
person?” or “are you qualified to become an
Authenticator?”.

A. System architecture

The system is composed of three kind of agents:
Coordinator (C), Authenticator (A) and Requestor (R), as
shown in Figure 4. These are connected through network
lines that may be not permanent, or may be wireless
connections, and more important, they are not safe:
messages may be loosed, spoofed, replicated or created
using old discovered passwords.

Figure 4. Agent R’s entry in the VO, using COORD1 as

access point

A VO may have multiple Coordinators that may be
connected to resource (Authenticator) nodes. Because
connections to Authenticator nodes are made on request,
when the system is started the Coordinators are not
connected to any Authenticators.

The Coordinators play a crucial role in the initial
authentication of nodes. For the initial authentication we
have chosen the certificate approach because this allows
an authentication even if the CA is not on-line and it may
be done by any node that has the public certificate of the
CA. The Coordinators may not be connected with all
nodes in the VO, but they can authenticate users

independently from each other by requesting the user’s
Certificate.

When a client (Requestor agent - R) wants to join the
VO, to access the resources provided by an
Authenticator, he takes his request to one of the
Coordinators. Because this request is accompanied by a
certificate, a certificate-based authentication protocol is
used: SSL. If the user does not possess a certificate, a
user password may be used to complete the protocol.

B. Registration

The process of registration can take any form, through
a web page, e-mail, the important thing is that at the end,
the user will have a certificate containing personal data
(supported algorithms, password and random number
generation capabilities, encryption, decryption speeds)
signed by a Certification Authority (CA).

C. The agents

The Coordinator agent’s role is mainly for primary
authentication. We say mainly, because it will also have
other purposes in the future, like the centralization of
node behavior and key lifetime assertion. The system
allows the access of two kinds of agents:

• Authenticator

• Requestor

If a new node wants to become an Authenticator

(0,, ≥= AAi NNiA), he must first authenticate

himself at one of the Coordinators (Cj NjC ≤≤1,),

using his secret password
jiCAK and presenting the

certificate given by the CA. After the verification of the

password and the certificate, jC will engage in a

provocation conversation with iA , testing the

“knowledge” of the new agent, so iA can prove that it is

capable of authenticating other users.
The conversation between the two parts consists of a

sequence of question/response (X/Y) type messages as
those described in the process of argumentation in Letia
[8], the difference being that this conversation is based on
challenging the opponent, existing only one proponent,
the Coordinator:

• 0, ≥′ iQi

• 1, +=′ ijR j

• XQi ∈′

• YR j ∈′

The proposed verifications include:
� Random number generation (rand)
� Supported algorithms (alg)
� Proposed message encryption speed (enc)

� Password generation (pwd)
Having these analyzed, a normalized quality function

of the agent is constructed:
Qag(rand, alg, enc, pwd) = (f (rand) + (1)

f (alg) + f (enc) + f (pwd)) / 4

where []1,0: →Rf . The result is compared with the

one in the database. The accepted tolerance function
allowed, that is, the allowable difference between the
value stored in the database at registration and the
computed value is the following:

αη ≤−= QDQag (2)

where QD is the stored (registered) value of the quality

of the agent, and α is the allowed tolerance level.
After the authentication process has been completed,

the iA agent is allowed to connect to the next

Authenticator node, requesting the Coordinator to initiate
the authentication algorithm described in the next section.

The Authenticator agent is responsible for the
introduction of nodes wanting to migrate to other
Authenticators. Because Authenticators stand for the
actual resources in the VO, we consider the terms
Authenticator and resource as having the same meaning.
The requirements of the authenticated nodes are passed
from Authenticator to Authenticator. These include a set

of values { }
iii KIL ,, , where iL is the lifetime of the

new session key, iI is the requirement of the new agent,

to authenticate other agents, and iK is the capability of

the agent (password generation, algorithms, …).
The last agent is the Requestor agent, which may

correspond to any entity that wants to request an
authentication from the organization. If a newly
authenticated entity has the possibility to authenticate
other nodes, he will be an Authenticator. Else, he will
remain in the state of Requestor.

This chain of authentication allows the system to be
scalable and not to depend on the functionality of the
Coordinators.

D. Chained-Authentication models

In this section we analyze how newly authenticated
nodes can gain access to resources provided by the VO.

As stated in the previous section, the Coordinator’s
role in the VO is to provide an initial authentication and
coordination of new agents to the appropriate resources.

Newly authenticated agents send the list of resources
they would like to access to the Coordinator (Figure 5).

Figure 5. Agent coordination process to the

requested resources

Because resources may become unavailable, or highly

loaded, it is the Coordinator’s role to find an available
resource for the agent and return it’s address.

The authentication process takes the form of a three-
party authentication protocol where, in the initial state,
the Coordinator plays the part of the third party.

After the coordination process is complete, nodes may
move from one agent to another using the same three-
party authentication protocol. This continuous
authentication process is called a chained-authentication.

Next, we present three chained-authentication models,
each of them having advantages and disadvantages.

D.1 Coordinator-based chained-authentication model

Because Coordinators share passwords with all the
resources (through certificates), they have the ability to
authenticate users at all the requested nodes, as shown in
Figure 6.

Figure 6. Coordinator-based authentication of agents
at every resource (Authenticator) point using

a third-party authentication protocol

Although this model solves the multiple resource
access problem, if the VO has many users (it can vary
from a couple of hundred users to ten thousands of users),
the Coordinators can not handle the load, leading to the
collapse of the entire VO.

D.2 Passive chained-authentication model

This model assumes that the Requestor agent has
already been authenticated at a resource. This
authentication model is passive from the Requestor point

of view, because the actual authentication to the next
requested resource is done by the current Authenticator
node, which may imply multiple authentications, as
shown in Figure 7.

Initial connections

established using

a Coordinator-

based auth. model

Authentication

of A1 at A3 using

A2 as the third

patry

…

Authentication

of A1 at An using

Ak as the third

patry

Figure 7. Passive authentication of agents at next
resource

Although this model removes the load from the

Coordinator, it is up to the current Authenticator to find
the next available resource, which may include multiple
authentications. The user will stay passive until the
Authenticator finds the next resource.

D.3 Active chained-authentication model

In this model (Figure 8), the current Authenticator
authenticates the agent at the next resource, which may
not be the next actual resource requested, but an
intermediary node. This is why, in this model, the user is
Active, constantly requesting authentication until it
reaches the resource it wants to access.

Initial connections

established using

a Coordinator-

based auth. model

Authentication

of R at A2 using

A1 as the third

patry

…

Authentication

of R at An using

Ak as the third

patry

Figure 8. Active authentication of agents at every
intermediary resource

Although the load of next authentication is removed

from current Authenticator, it may be passed to an
intermediary node or multiple intermediary nodes.

COORD

R is

authenticated at

authenticator A1

A1 A2

 R A3

A1 A2

 R A3

A1 Ak

 R An

A1 An

 R

R is

authenticated at An

A1 A2

 R A3

A1 A2

 R A3

Ak An

 R

A1

 R

IV. AUTHENTICATION PROTOCOL

In the described system, there was a need for an
authentication protocol that satisfied the following:

a) Support protocol runs in insecure
environments

b) Support message loss
c) Support creation of session key by a capable

third party
d) Minimize the contribution of random keys

from the new entity
e) Use only symmetric algorithms
f) Minimize DoS and Replay attack possibility

To satisfy these needs, a number of existing protocols
have been studied: “Wide-Mouth Frog” [9], Yahalom [9],
Needham-Schroeder [10], Otway-Rees [11], Neumann-
Stubblebine [12] and Kerberos version 5, as evaluated in
[13] and all of them shortly presented in [14]. From these,
only Kerberos satisfies almost all needs, the rest having
the big problem that they are all open to DoS attacks
because any user can initiate the authentication
mechanism.

Kerberos could not be used in our system, because of
the following. Firstly, it is too complex, relying on two
authentication servers and timer synchronization, or in
our distributed system, the only servers that need to
communicate are adjacent and they may not have they’re
clocks synchronized. Secondly, because the key
generation in Kerberos happens on every query for a
TGT message, and if we consider a system where
messages may be loosed, a new key will be generated
even if the client did not get the last one. Also, a third
party authentication protocol is more preferred because
the “Man in the middle” attack may be harder to create if
messages do not travel on the same line.

A. The Casper formalization language

This section briefly introduces the Casper security
protocol specification language. For more information,
the reader should consult [5].

The Casper project, developed by Gavin Lowe is
composed of a specification language and a compiler.
The Casper protocol specification language is simple and
clear, making it possible to describe a protocol in a few
minutes. The goal of the project was to offer a simple
language, similar to the “usual” way of specifying
protocols that would allow (using the compiler)
transforming a protocol specification into a more
complex, CSP description.

Next, we will briefly describe the syntax of the Casper
language.

A Casper specification of a protocol is structured in
sections. Because of space considerations we can not
offer a full-description of each section, therefore we will
focus our attention upon the following sections:

#Free variables

#Protocol description

#Actual variables

#System

#Intruder Information
In the ‘#Free variables’ section, the user may specify

the types of participants to the protocol (Agents, Servers),
Key types (SessionKeys of ServerKeys), timestamp
variables and so on. The naming of the variables chosen
in this section is used in the ‘#Protocol description’.

The ‘#Actual variables’ section contains the actual
participants that take part to the run of the protocol.
Using these variables, the System is specified in the
‘#System’ section, stating the roles that each variable will
take.

Finally, an intruder information is provided in the
‘#Intruder Information’ section so that the protocol may
be verified against the knowledge of the intruder.

The steps of a protocol are numbered according to the
specification, larger messages may be broken into sub-
steps by using letters:

2.a 2.b
Sending an encrypted message is possible using the

following statement:
A -> B : { X, Y, Z }{ kab }

which means that A sends to B an encrypted message
with the key ‘kab’ that is composed of 3 parts: X, Y and
Z.

If a party does not need to understand a certain
message, it must be specified with the special operator
‘%’ meaning that the message is stored in a variable and
sent to the destination principal later:

Store message into ‘Va’:
A -> B : { kab, Rs1, Ts }{ k } % Va

Send it to other principal:
B -> C : Va % { kab, Rs1, Ts }{ k }

B. The proposed protocol

Figure 2. The algorithm steps for authenticating the

new agent B

The ‘#Free variables’ section:

A, B : Agent

S : Server

SKey : Agent -> ServerKey

kab : SessionKey

Ts, Tb : TimeStamp

L, Rb, Rs, Rs1 : Nonce

InverseKeys : (SKey, SKey)

The ‘#Protocol description’ section:
0. -> B : A
1. B -> S : {A, Tb, Rb }{ SKey(B) }
2a. S -> A : { B, Rs, kab, L, Ts }{ SKey(A) }
2b. S -> A : { kab, Rs1, Ts }{ SKey(B) } % Va
3a. S -> B : { A, Rs1, kab, L, Ts }{ SKey(B) }
3b. S -> B : { Rb - 1 }{ kab }
3c. S -> B : { kab, Rs, Ts }{ SKey(A) } % Vb
4. B -> A : { B, Vb % { kab, Rs, Ts }{ SKey(A) } }{ kab }
5. A -> B : { A, Va % { kab, Rs1, Ts }{ SKey(B) } }{ kab }

The ‘#Actual variables’ section:

Alice, Bob, Mallory : Agent
Sam : Server
Kab : SessionKey
TS, TB : TimeStamp
Life, RB, RS, RS1 : Nonce

The ‘#System’ section:

INITIATOR(Bob, Sam, TB, RB)
RESPONDER(Alice)
SERVER(Sam, TS, Life, RS, RS1, Kab)

The ‘#Intruder Information’ section:

Intruder = Mallory
IntruderKnowledge = {Alice, Bob, Mallory, Sam,

 SKey(Mallory)}

C. Protocol analysis
The protocol is straightforward, being initiated by

agent Bob (the Requestor), who wants to authenticate
himself to Alice (node A). S plays the role of the third-
party server.

The protocol assumes the following:
i. A and S share a secret key SKey(A)

ii. B and S share a secret key SKey(B)
Although these keys are in fact session keys

(established at the beginning, when the user authenticates
himself to one of the Coordinators) we consider them
server keys because of the roles they play.

To protect against replay attacks, the protocol makes
use of timestamps. The clocks of communicating
neighbors do not have to be synchronized because the
timestamp is used only as a Nonce [16]-[17]-[18]-[19]
(“Number once used”). This way, the receiving entities
will not have to store a list of random nonces and verify
them against incoming messages, but check only the
timestamp of the latest package.

The protocol is started by B who wants to authenticate
himself to A (step 0).

0. -> B : A
In step 1, B informs S that it wants to be authenticated

to A:
1. B -> S : {A, Tb, Rb }{ SKey(B) }

B sends to S this message, composed of the name of A,
a Timestamp Tb and a random number Rb, all encrypted
with the key he shares with the server. The timestamp is
sent to ensure S that this is a fresh message. The Rb is
used to hide the contents of the message so that the

protocol is well protected against offline-dictionary
attacks.

Receiving this message, the server checks the
timestamp and generates two messages, one of which is
sent to A and the other one is sent to B. This way, A may
present to B a proof that he is “known” by S and B may
present to A a proof that he is also “known” by S. The
word “known” is used to state that S has authenticated the
parties.

The message sent back to A is decomposed in two
parts for clarity. The first part:

2a. S -> A : { B, Rs, kab, L, Ts }{ SKey(A) }
informs A about the session key ‘kab’ that the server

has generated. It also specifies a random number Rs that
will be used by A to authenticate B. The package
includes also a Lifetime for the key.

The second part:
2b. S -> A : { kab, Rs1, Ts }{ SKey(B) } % Va

is a message that A does not understand, beeing
encrypted with B’s server key. It is used only to prove
that A knows the key and he got it from S. Also, in this
package, the server ties the session key to the Rs1
random number so that the package may be authenticated
with the random number sent back to B in step 3a.

The messages sent from B by S are composed of 3
parts. The first part:

3a. S -> B : { A, Rs1, kab, L, Ts }{ SKey(B) }
is a message similar to 2a, only addressed to B.

The second part:
3b. S -> B : { Rb - 1 }{ kab }

is used to ensure B that the server has produced the key
and it is a response to the challenge sent by B in step 1.

The third part:
3c. S -> B : { kab, Rs, Ts }{ SKey(A) } % Vb

is similar to the message 2b.
After receiving these messages, the two parties now

exchange the messages that will confirm them that the
other side has received exactly the same password in the
same run of the protocol. This is done in steps 4 and 5.

The great thing about this protocol is that it minimizes
the use of B’s capabilities in generating passwords and
random numbers. The authentication process is grouped
in sessions, the B agent having the capability of
generating new authentication sessions if it wants to re-
generate a password, or re-authenticate himself. If a
message is loosed, B will not have to create a new
authentication session, but he will only send a message
for the same session, the keys being re-sent and not re-
generated this way. The initial random number Rb is only
used so that on response the client knows for which
session was the authentication process started.

In the future, we will offer a formalization of the
protocol using Typed-MSR where we will model and
analyze the users and the possible intruders as specified
in [16]-[17]-[18], and using the Typed SPI-Calculus [19]
that will allow us the verification of the protocol.

V. CONCLUSION

The described system allows the distributed
authentication of users that are previously registered at a
Coordinator. The system does not differ very much from
other authenticated virtual organizations when we are
looking at the way entities join the system. The main
difference is that users are not required to have a
password with any of the entities in the VO and still be
able to authenticate themselves properly using a third-
party authentication protocol, as the one described in
section III.

This system is recommended for use in mobile
networks where agents (nodes) move around
continuously, collecting information and then leaving the
organization.

The protocol described in section III allows not only a
third-party authentication, but was designed for the
tolerance of message loss, and for use in environments
that are not message-secure.

In this paper, we have presented a system that offers a
decentralized authentication protocol where each node
may become an Authenticator. As future work we plan to
construct a simulation model for the system that will
allow us to detect and correct the possible faults. Also,
we will have to investigate on the possibilities of
evaluating the security “fingerprint” (password and
random number generation capabilities) of a specified
user so that the password will only become a back-up
security element and not the primary means of
authentication.

In these kinds of systems, nodes may misbehave, may
malfunction as the result of hardware/software error,
generating random data in a Byzantine manner. This is
why, we propose also as a future work, the introduction
of behavior lists for each Authenticator agent so they may
be excluded from the system in proper time.

REFERENCES

[1] Timothy J. Norman, Alun Preece, Stuart Chalmers, Nicholas R.
Jennings, Michael Luck, Viet D. Dang, Thuc D. Nguyen, Vikas Deora,
Jianhua Shao, W. Alex Gray, Nick J. Fiddian, “Agent-based formation
of virtual organizations”, at KBS, 2004.
[2] Roberto Alfieri, Roberto Cecchini, Vincenzo Ciaschini, Luca
dell'Agnello, Ákos Frohner, Alberto Gianoli, Károly Lörentey, Fabio
Spataro, “VOMS, an Authorization System for Virtual Organizations”,
European Across Grids Conference, 2003, pp. 33-40.
[3] Michael Kaminsky, George Savvides, David Mazière, M. Frans
Kaashoek, “Decentralized user authentication in a global file system”, at
SOSP, 2003, pp. 60-73.
[4] Mark L. Green, Steven M. Gallo, Russ Miller,
”Grid-Enabled Virtual Organization Based Dynamic Firewall”, GRID
2004, Pittsburg, PA, USA, pp. 208-216.
[5] Gavin Lowe, “Casper: A compiler for the Analysis of Security
Protocols”, In Proc. CSFW ’97, Rockport. IEEE, 1997.
[6] Ana L. C. Bazzan, “A distributed approach for coordination of
traffic signal agents”, AAMAS, 2005, 131-164.
[7] N. Haque, N. R. Jennings, L. Moreau, “Resource allocation in
communication networks using market-based agents”, KBS, 2005.

[8] Ioan Alfred Letia, “Gradually intrusive argumentative agents for
diagnosis”, Muti-Agent Systems for Medicine, Computational Biology
and Bioinformatics, 2005.
[9] M. Burrows, M. Abadi, R. Needham, “A Logic of Authentication”.
ACM Transactions on Computer Systems, Feb 1990, pp. 18-36.
[10] R.M. Needham and M.D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers”, Communication for
the ACM, Dec 1978, pp 993-999.
[11] D. Otway and O. Rees, “Efficient and Timely Mutual
Authentication”, Operating Systems Review, 1987, pp. 8-10.
[12] A. Kehne, J. Schonwalder, H. Langendorfer, “A Nonce-Based
Protocol for Multiple Authentications”, Operating Systems Review, Oct
1992, pp. 84-89.
[13] B.C. Neuman and T. Ts’o, “Kerberos: An Authentication Service
for Computer Networks”, IEEE Communications Magazine, Sep 1994,
pp 33-38.
[14] Bruce Schneier, “Applied Cryptography”. John Wiley & Sons,
1996.
[15] C. A. R. Hoare, “Communicating Sequential Processes”, Prentice
Hall, April 1985.
[16] Balopoulos T. Gritzalis S. Katsikas S., "An Extension of Typed
MSR for specifying Esoteric Protocols and their Dolev-Yao Intruder",
in Proceedings of the CMS'2004 IFIP TC6/TC11 International
Conference on Communications and Multimedia Security. D. Chadwick
(Ed.), September 2004, Salford, UK, Kluwer Academic Publishers.
[17] C.J.F. Cremers, S. Mauw & E.P. de Vink, “Formal Methods for
Security Protocols: Three Examples of the Black-Box Approach”,
NVTI Newsletter 7, 2003.
[18] Iliano Cervesato, “Typed Multiset Rewriting Specifications of
Security Protocols”, Electr. Notes Theor. Comput. Sci. 40, 2000.
[19] A. D. Gordon, A. S. A. Jeffrey, “Authenticity by Typing for
Security Protocols”, In J. Computer Security. 11 (4). 2003, pp. 451-521.
[20] Mary R. Thompson, Abdelilah Essiari, Srilekha Mudumbai,
“Certificate-based Authorization Policy in a PKI Environment”, ACM

Trans. Inf. Syst. Secur., 6(4), 2003, pp. 566–588.
[21] Laura Pearlman, Ian Foster, Von Welch, Carl Kesselman, Steven
Tuecke, “A Community Authorization Service for Group
Collaboration”, in the Proceedings of the Third International Workshop
on Policies for Distributed Systems and Networks, Monterey, CA,
USA, 2002, pp. 50-59.
[22] Markus Lorch, “PRIMA Privilege Management and Authorization
in Grid Computing Environments”, PhD Thesis, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia, USA, April 16th,
2004.
[23] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell'Agnello, Á. Frohner,
K. Lorentey and F. Spataro, “From gridmap-file to VOMS: managing
authorization in a Grid environment”, in Future Generation. Comput.

Syst. 21, 4, 2005, pp. 549-558.
[24] Marvin A. Sirbu, John Chung-I Chuang: “Distributed
Authentication in Kerberos Using Public Key Cryptography”,
Symposium on Network and Distributed System Security, 1997, p. 134.
[25] J. R. Burruss, T. W. Fredian, M.R. Thompson, “ROAM: An
Authorization Manager for Grids ”, Journal of Grid Computing, 4(4),
2006, pp. 413-423.
[26] Rebekah Lepro, “Cardea: Dynamic Access Control in Distributed
Systems”, NAS Technical Report NAS-03-020, November 2003.
[27] Wolfgang Hommel: “An Architecture for Privacy-Aware Inter-
domain Identity Management”, In Proceedings of the 16th IFIP/IEEE

International Workshop on Distributed Systems: Operations and

Management (DSOM 2005), Barcelona, Spain, October 2005, Springer.

