
 
Abstract — Digital certificates (through the use of public-

key cryptography) provide an entity the power to 

authenticate users even when the CA (Certification 

Authority) that issued the certificate is not on line. This 

authentication mechanism is widely used today in Virtual 

Organizations (VOs) to distribute the weight of the 

authentication. However, as shown in this paper, the use of 

public-key cryptography may dramatically reduce the 

performance of a system, and consequently reduce the 

performance of the VO if it is used to authenticate users at 

every node. Thus, we outline the specifications of a Virtual 

Organization, where public-key cryptography is used only 

for the initial authentication of nodes. To provide access to 

multiple resources in the VO, a Chained Authentication 

Model is proposed that makes use of a symmetric-key based 

three-party authentication protocol. 
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Formalization, Virtual Organizations. 

 
I. INTRODUCTION 

 
In today’s Internet, the possibility of being the subject 

of an attack is growing each day. This is why companies 
restrict access to their stations by creating Virtual Private 
Networks (VPN) or by using proxies and secured 
gateways. However, these solutions are static and 
represent an authentication and communication 
bottleneck (for the protected networks). 

This paper deals with a Mobile Virtual Organization 
type, where a node may move around, and may access 
any other node in the system, previously being 
authenticated by a third, trusted party. There have several 
proposals for the administration and authentication in 
Virtual Organizations ([1]-[2]-[3]-[4]-[13]), but the 
systems described consider a global access and 
authentication point, meaning that every node will have 
to consult a central authority when accepting a 
connection from a specific host and each client will need 
to have a password with each node it wishes to access. 

These assumptions are perfectly reasonable if we 
consider systems that are static or protected by physical 
devices (routers, proxys) [4]. But today, the mobile world 

is emerging and VO’s may accept each day new members 
who can offer new services. 

Other solutions [20]-[21]-[22]-[23]-[24]-[25]-[26]-[27] 
use certificate hierarchies to distribute the weight of the 
authentication among Certification Authorities that do not 
have to be online for the authentication process to take 
place. Although these provide a real-life solution to the 
authentication problem in VOs, the performance of the 
entire Virtual Organization may dramatically drop if 
every user must be authenticated at each node using a 
time-consuming public key algorithm. 

We propose an organization type having multiple 
points of access, where each node, modeled as an agent, 
can become a possible authentication point (i.e. 
Authenticator). To avoid affecting the performance of the 
Virtual Organization (VO), we use public-key 
cryptography only at the initial authentication point. For 
later authentications we use private-key cryptography and 
a third-party authentication protocol so that the system 
will be able to handle a large amount of users. 

The proposed protocol is formalized and transformed 
into CSP specification [15] using the Casper compiler 
developed by Gavin Lowe [5].  

The paper is structured as follows. Section II shows 
how symmetric and asymmetric encryption algorithms 
influence multimedia systems, thus, motivating the use of 
symmetric-key based authentication in the proposed VO. 
In section III we introduce our system, describing VOs in 
general, and then specifying the properties of the 
proposed Coordinated Mobile Virtual Organization. In 
section IV we describe the third-party protocol used in 
the process of authentication. We end with a conclusion 
and a specification of future work in section V. 
 

II. THE NEED FOR DISTRIBUTED  
AUTHENTICATION 

 
A centralized authentication model, where every node 

in the system must be able to access information about 
every user (through a database link, for example), may 
eventually become a bottleneck, leading to the collapse of 
the system under it’s own weight. There have been 
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several proposals made to distribute the weight of the 
authentication among system components [13]-[20]-[21]-
[22]-[23]-[24]-[25]-[26]-[27], differentiated by the 
component that guarantees the authentication of a 
requesting user. Thus, we can identify authentication 
models that are based on passwords or certificates. 

A. Password-based authentication 

The password approach implies that there is a 
component of the system that stores the password of the 
user, used in the authentication process as a symmetric 
key for encrypting the communication channel between 
the user and the server. The most representative 
authentication model from this category is Kerberos [13], 
which uses a Key Distribution Center (KDC) to hold the 
user passwords. The KDC issues to clients short-lived 
credentials (a Ticket Granting Ticket - TGT), which must 
be presented to a Ticket Granting Service (TGS) from 
where clients obtain session tickets to access a certain 
server. 

The major problem of a system that is based on a 
password-based authentication is that the password is 
used for authenticating by both the user and the server 
(considering that symmetric cryptography is used). 
Because of this, if someone is able to obtain a password, 
it can impersonate the user and the server as well. 

B. Certificate-based authentication 

Certificates are digital documents signed by a central 
Certification Authority (CA) in which all of the system 
components trust. A signature is created using an entity’s 
private key and it can be verified by using the entity’s 
public key. Thus, every component of a system that 
possesses a certificate also possesses a public/private key 
pair. 

A certificate usually contains the name of the authority 
that emitted the certificate, the issue and expiration dates, 
the name of the entity for which the certificated is issued, 
the public key of the entity and possibly other 
information (which may be system dependent). All this is 
signed using the CA’s private key. 

When the certificate-based model is used, system 
components can prove their identity by simply signing 
information. They can verify a signature by using the 
entity’s public key, which is retrieved in a certificate 
signed by the CA. 

A major problem with using certificate-based 
authentication is based on performance, since public key 
(asymmetric) cryptography is known to be at least 1000 
times slower than secret key (symmetric) cryptography. 
Another drawback is the maintenance of the certificate 
revocation lists, which must be stored on public servers 
that have to be regularly updated. 

C. Performance evaluation 

To construct a system that uses a certain authentication 
model, one must take care when evaluating the security 
requirements because security means lesser performance 
of the resulting system. 

Also, it is important to know if the system should rely 
on a password or certificate based authentication because 
the problems that result for each implementation must be 
treated in a different manner. 

The basic question that must be eventually answered is 
the following: how does symmetric and asymmetric 
cryptography affect the functionality of a system 
component? To answer this question, we have tested the 
effect of the RSA and AES algorithms on the normal 
functioning of a multimedia (audio and video) server. 
What we have tested actually was the performance flow 
of the server when running in parallel multiple 
authentication sequences that made use of the RSA or 
AES algorithms. 

The test was made using an AMD Athlon XP 1700+ 
(1.47 GHz) with 256 MB of RAM desktop computer on 
which the server was running. We used 50 User Threads 
to create a load on the server, and several Cryptographic 

Threads that ran one encryption and one decryption of a 
1024 bit buffer/second/thread (Figure 1) to simulate 
parallel authentication. The 1024 bit buffer simulates a 
1024-bit key sent to a user. 
 

 
Figure 1. Multimedia test-server structure 

 
The frames were dispatched to the User Threads by the 

Frame Dispatcher thread. A separate thread (Frame 

Counter) was used to count the number of frames that 
actually reached to each user thread. 

Because the purpose of the test was to reveal the 
influence of one ore more authentication sequences on 
the functionality of an existing system, we did not use 
any encryption on the multimedia channels.  
 



 
Figure 2. Asymmetric (RSA) encryption effect 

on the multimedia server 
 

In Figure 2 we can see just how much does asymmetric 
cryptography cost. When running one encryption in 
parallel, the performance of the system drops from 3206 
frames processed to 3008, for 1024-bit key, and to 2977, 
for a 2048-bit key. Thus, the system loses almost 10% 
only for one asymmetric encryption/decryption per 
second, which is not that critical, if we consider that there 
are 50 users logged in. However, a single authentication 
sequence may consist of several encryptions/decryptions 
[10], thus for one authentication, there would have to be 
run two or three encryptions+decryptions/second, 
resulting in 20-30% performance loss, which can become 
a serious concern for live streaming. 

Figure 3 shows the effect of applying symmetric 
cryptography (AES algorithm) on the server. In this case, 
there is very little variation (±0.093) in the number of 
frames sent to users even when running 20 parallel 
encryptions. 
 

 
Figure 3. Symmetric (AES) encryption effect 

on the multimedia server 
 

Knowing just how much a single encryption/decryption 
affects the performance of a server, we should consider 
using public key cryptography only when absolutely 
necessary. In addition, when working with multimedia 
servers, the authentication of a single user may affect the 
streaming of all other users, which in case of audio 
streaming is not permitted. 

III. COORDINATED MOBILE VIRTUAL 
ORGANIZATIONS 

 
A Virtual Organization (VO) is a set of entities 

(nodes), that we call agents, each of them having a set of 
resources that may be used by a specific client, or other 
agent. We consider nodes as being agents because they 
are not restricted to one point, they can move from one 
node to another to satisfy their goals. Examples of 
autonomous agent systems can be found at [1]-[6]-[7]-
[8]. Because of the observations made in section II, the 
proposed VO uses an initial public-key based 
authentication and multiple subsequent private-key 
authentications. 

The purpose of this paper is not to answer the question 
“why is a VO created?” or “how does it share 
resources?”. These questions are covered in detail in [1]. 
Instead, the questions that may find answers here, look 
like “is he safe to join the VO?”, “am I talking to the right 
person?” or “are you qualified to become an 
Authenticator?”. 

A. System architecture 

The system is composed of three kind of agents: 
Coordinator (C), Authenticator (A) and Requestor (R), as 
shown in Figure 4. These are connected through network 
lines that may be not permanent, or may be wireless 
connections, and more important, they are not safe: 
messages may be loosed, spoofed, replicated or created 
using old discovered passwords. 

 
Figure 4. Agent R’s entry in the VO, using COORD1 as 

access point 
 

A VO may have multiple Coordinators that may be 
connected to resource (Authenticator) nodes. Because 
connections to Authenticator nodes are made on request, 
when the system is started the Coordinators are not 
connected to any Authenticators. 

The Coordinators play a crucial role in the initial 
authentication of nodes. For the initial authentication we 
have chosen the certificate approach because this allows 
an authentication even if the CA is not on-line and it may 
be done by any node that has the public certificate of the 
CA. The Coordinators may not be connected with all 
nodes in the VO, but they can authenticate users 



independently from each other by requesting the user’s 
Certificate. 

When a client (Requestor agent - R) wants to join the 
VO, to access the resources provided by an 
Authenticator, he takes his request to one of the 
Coordinators. Because this request is accompanied by a 
certificate, a certificate-based authentication protocol is 
used: SSL. If the user does not possess a certificate, a 
user password may be used to complete the protocol. 

B. Registration 

The process of registration can take any form, through 
a web page, e-mail, the important thing is that at the end, 
the user will have a certificate containing personal data 
(supported algorithms, password and random number 
generation capabilities, encryption, decryption speeds) 
signed by a Certification Authority (CA). 

C. The agents 

The Coordinator agent’s role is mainly for primary 
authentication. We say mainly, because it will also have 
other purposes in the future, like the centralization of 
node behavior and key lifetime assertion. The system 
allows the access of two kinds of agents: 

• Authenticator  

• Requestor 

If a new node wants to become an Authenticator 

( 0,, ≥= AAi NNiA ), he must first authenticate 

himself at one of the Coordinators ( Cj NjC ≤≤1, ), 

using his secret password 
jiCAK  and presenting the 

certificate given by the CA. After the verification of the 

password and the certificate, jC  will engage in a 

provocation conversation with iA , testing the 

“knowledge” of the new agent, so iA  can prove that it is 

capable of authenticating other users. 
The conversation between the two parts consists of a 

sequence of question/response (X/Y) type messages as 
those described in the process of argumentation in Letia 
[8], the difference being that this conversation is based on 
challenging the opponent, existing only one proponent, 
the Coordinator: 

• 0, ≥′ iQi  

• 1, +=′ ijR j  

• XQi ∈′  

• YR j ∈′  

The proposed verifications include: 
� Random number generation (rand) 
� Supported algorithms (alg) 
� Proposed message encryption speed (enc) 

� Password generation (pwd) 
Having these analyzed, a normalized quality function 

of the agent is constructed: 
Qag( rand, alg, enc, pwd ) = ( f (rand) + (1) 

f (alg) + f (enc) + f (pwd) ) / 4 

where [ ]1,0: →Rf . The result is compared with the 

one in the database. The accepted tolerance function 
allowed, that is, the allowable difference between the 
value stored in the database at registration and the 
computed value is the following: 

αη ≤−= QDQag   (2) 

where QD  is the stored (registered) value of the quality 

of the agent, and α  is the allowed tolerance level. 
After the authentication process has been completed, 

the iA  agent is allowed to connect to the next 

Authenticator node, requesting the Coordinator to initiate 
the authentication algorithm described in the next section. 

The Authenticator agent is responsible for the 
introduction of nodes wanting to migrate to other 
Authenticators. Because Authenticators stand for the 
actual resources in the VO, we consider the terms 
Authenticator and resource as having the same meaning. 
The requirements of the authenticated nodes are passed 
from Authenticator to Authenticator. These include a set 

of values { }
iii KIL ,, , where iL  is the lifetime of the 

new session key, iI  is the requirement of the new agent, 

to authenticate other agents, and iK  is the capability of 

the agent (password generation, algorithms, …). 
The last agent is the Requestor agent, which may 

correspond to any entity that wants to request an 
authentication from the organization. If a newly 
authenticated entity has the possibility to authenticate 
other nodes, he will be an Authenticator. Else, he will 
remain in the state of Requestor. 

This chain of authentication allows the system to be 
scalable and not to depend on the functionality of the 
Coordinators. 

D. Chained-Authentication models 

In this section we analyze how newly authenticated 
nodes can gain access to resources provided by the VO. 

As stated in the previous section, the Coordinator’s 
role in the VO is to provide an initial authentication and 
coordination of new agents to the appropriate resources. 

Newly authenticated agents send the list of resources 
they would like to access to the Coordinator (Figure 5). 
 



 
Figure 5. Agent coordination process to the 

requested resources 
 
Because resources may become unavailable, or highly 

loaded, it is the Coordinator’s role to find an available 
resource for the agent and return it’s address. 

The authentication process takes the form of a three-
party authentication protocol where, in the initial state, 
the Coordinator plays the part of the third party. 

After the coordination process is complete, nodes may 
move from one agent to another using the same three-
party authentication protocol. This continuous 
authentication process is called a chained-authentication. 

Next, we present three chained-authentication models, 
each of them having advantages and disadvantages. 
 

D.1 Coordinator-based chained-authentication model 

Because Coordinators share passwords with all the 
resources (through certificates), they have the ability to 
authenticate users at all the requested nodes, as shown in 
Figure 6. 
 
 
 

 
 
 
 
 

Figure 6. Coordinator-based authentication of agents 
at every resource (Authenticator) point using 

a third-party authentication protocol 
 

Although this model solves the multiple resource 
access problem, if the VO has many users (it can vary 
from a couple of hundred users to ten thousands of users), 
the Coordinators can not handle the load, leading to the 
collapse of the entire VO. 
 

D.2 Passive chained-authentication model 

This model assumes that the Requestor agent has 
already been authenticated at a resource. This 
authentication model is passive from the Requestor point 

of view, because the actual authentication to the next 
requested resource is done by the current Authenticator 
node, which may imply multiple authentications, as 
shown in Figure 7. 
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Figure 7. Passive authentication of agents at next 
resource 

 
Although this model removes the load from the 

Coordinator, it is up to the current Authenticator to find 
the next available resource, which may include multiple 
authentications. The user will stay passive until the 
Authenticator finds the next resource. 
 

D.3 Active chained-authentication model 

In this model (Figure 8), the current Authenticator 
authenticates the agent at the next resource, which may 
not be the next actual resource requested, but an 
intermediary node. This is why, in this model, the user is 
Active, constantly requesting authentication until it 
reaches the resource it wants to access. 
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Figure 8. Active authentication of agents at every 
intermediary resource 

 
Although the load of next authentication is removed 

from current Authenticator, it may be passed to an 
intermediary node or multiple intermediary nodes. 
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IV. AUTHENTICATION PROTOCOL 
 

In the described system, there was a need for an 
authentication protocol that satisfied the following: 

a) Support protocol runs in insecure 
environments 

b) Support message loss 
c) Support creation of session key by a capable 

third party 
d) Minimize the contribution of random keys 

from the new entity 
e) Use only symmetric algorithms 
f) Minimize DoS and Replay attack possibility 

To satisfy these needs, a number of existing protocols 
have been studied: “Wide-Mouth Frog” [9], Yahalom [9], 
Needham-Schroeder [10], Otway-Rees [11], Neumann-
Stubblebine [12] and Kerberos version 5, as evaluated in 
[13] and all of them shortly presented in [14]. From these, 
only Kerberos satisfies almost all needs, the rest having 
the big problem that they are all open to DoS attacks 
because any user can initiate the authentication 
mechanism. 

Kerberos could not be used in our system, because of 
the following. Firstly, it is too complex, relying on two 
authentication servers and timer synchronization, or in 
our distributed system, the only servers that need to 
communicate are adjacent and they may not have they’re 
clocks synchronized. Secondly, because the key 
generation in Kerberos happens on every query for a 
TGT message, and if we consider a system where 
messages may be loosed, a new key will be generated 
even if the client did not get the last one. Also, a third 
party authentication protocol is more preferred because 
the “Man in the middle” attack may be harder to create if 
messages do not travel on the same line. 

 
A. The Casper formalization language 

This section briefly introduces the Casper security 
protocol specification language. For more information, 
the reader should consult [5]. 

The Casper project, developed by Gavin Lowe is 
composed of a specification language and a compiler. 
The Casper protocol specification language is simple and 
clear, making it possible to describe a protocol in a few 
minutes. The goal of the project was to offer a simple 
language, similar to the “usual” way of specifying 
protocols that would allow (using the compiler) 
transforming a protocol specification into a more 
complex, CSP description. 

Next, we will briefly describe the syntax of the Casper 
language. 

A Casper specification of a protocol is structured in 
sections. Because of space considerations we can not 
offer a full-description of each section, therefore we will 
focus our attention upon the following sections: 

#Free variables 

#Protocol description 

#Actual variables 

#System 

#Intruder Information 
In the ‘#Free variables’ section, the user may specify 

the types of participants to the protocol (Agents, Servers), 
Key types (SessionKeys of ServerKeys), timestamp 
variables and so on. The naming of the variables chosen 
in this section is used in the  ‘#Protocol description’. 

The ‘#Actual variables’ section contains the actual 
participants that take part to the run of the protocol. 
Using these variables, the System is specified in the 
‘#System’ section, stating the roles that each variable will 
take. 

Finally, an intruder information is provided in the 
‘#Intruder Information’ section so that the protocol may 
be verified against the knowledge of the intruder. 

The steps of a protocol are numbered according to the 
specification, larger messages may be broken into sub-
steps by using letters: 

2.a 2.b 
Sending an encrypted message is possible using the 

following statement: 
A -> B : { X, Y, Z }{ kab } 

which means that A sends to B an encrypted message 
with the key ‘kab’ that is composed of 3 parts: X, Y and 
Z. 

If a party does not need to understand a certain 
message, it must be specified with the special operator 
‘%’ meaning that the message is stored in a variable and 
sent to the destination principal later: 

Store message into ‘Va’: 
A -> B : { kab, Rs1, Ts }{ k } % Va  

Send it to other principal: 
B -> C : Va % { kab, Rs1, Ts }{ k } 

 
B. The proposed protocol 

 
Figure 2. The algorithm steps for authenticating the 

new agent B 
 
The ‘#Free variables’ section: 

A, B  : Agent 

S   : Server 

SKey  : Agent -> ServerKey 

kab  : SessionKey 

Ts, Tb  : TimeStamp 

L, Rb, Rs, Rs1 : Nonce 

InverseKeys : (SKey, SKey) 



The ‘#Protocol description’ section: 
0.       -> B : A 
1.    B -> S : {A, Tb, Rb }{ SKey( B ) } 
2a.  S -> A : { B, Rs, kab, L, Ts }{ SKey( A ) } 
2b.  S -> A : { kab, Rs1, Ts }{ SKey( B ) } % Va 
3a.  S -> B : { A, Rs1, kab, L, Ts }{ SKey( B ) } 
3b.  S -> B : { Rb - 1 }{ kab } 
3c.  S -> B : { kab, Rs, Ts }{ SKey( A ) } % Vb 
4.   B -> A : { B, Vb % { kab, Rs, Ts }{ SKey( A ) } }{ kab } 
5.  A -> B : { A, Va % { kab, Rs1, Ts }{ SKey( B ) } }{ kab } 

 
The ‘#Actual variables’ section: 

Alice, Bob, Mallory  : Agent 
Sam    : Server 
Kab    : SessionKey 
TS, TB   : TimeStamp 
Life, RB, RS, RS1 : Nonce 

 
The ‘#System’ section: 

INITIATOR(Bob, Sam, TB, RB) 
RESPONDER(Alice) 
SERVER(Sam, TS, Life, RS, RS1, Kab) 

 
The ‘#Intruder Information’ section: 

Intruder = Mallory 
IntruderKnowledge = {Alice, Bob, Mallory, Sam,  

 SKey(Mallory)} 
 

C. Protocol analysis 
The protocol is straightforward, being initiated by  

agent Bob (the Requestor), who wants to authenticate 
himself to Alice (node A). S plays the role of the third-
party server. 

The protocol assumes the following: 
i. A and S share a secret key SKey( A ) 

ii. B and S share a secret key SKey( B ) 
Although these keys are in fact session keys 

(established at the beginning, when the user authenticates 
himself to one of the Coordinators) we consider them 
server keys because of the roles they play. 

To protect against replay attacks, the protocol makes 
use of timestamps. The clocks of communicating 
neighbors do not have to be synchronized because the 
timestamp is used only as a Nonce [16]-[17]-[18]-[19] 
(“Number once used”). This way, the receiving entities 
will not have to store a list of random nonces and verify 
them against incoming messages, but check only the 
timestamp of the latest package. 

The protocol is started by B who wants to authenticate 
himself to A (step 0). 

0.       -> B : A 
In step 1, B informs S that it wants to be authenticated 

to A: 
1.    B -> S : {A, Tb, Rb }{ SKey( B ) } 

B sends to S this message, composed of the name of A, 
a Timestamp Tb and a random number Rb, all encrypted 
with the key he shares with the server. The timestamp is 
sent to ensure S that this is a fresh message. The Rb is 
used to hide the contents of the message so that the 

protocol is well protected against offline-dictionary 
attacks. 

Receiving this message, the server checks the 
timestamp and generates two messages, one of which is 
sent to A and the other one is sent to B. This way, A may 
present to B a proof that he is “known” by S and B may 
present to A a proof that he is also “known” by S. The 
word “known” is used to state that S has authenticated the 
parties. 

The message sent back to A is decomposed in two 
parts for clarity. The first part: 

2a.  S -> A : { B, Rs, kab, L, Ts }{ SKey( A ) } 
informs A about the session key ‘kab’ that the server 

has generated. It also specifies a random number Rs that 
will be used by A to authenticate B. The package 
includes also a Lifetime for the key. 

The second part: 
2b.  S -> A : { kab, Rs1, Ts }{ SKey( B ) } % Va 

is a message that A does not understand, beeing 
encrypted with B’s server key. It is used only to prove 
that A knows the key and he got it from S. Also, in this 
package, the server ties the session key to the Rs1 
random number so that the package may be authenticated 
with the random number sent back to B in step 3a. 

The messages sent from B by S are composed of 3 
parts. The first part: 

3a.  S -> B : { A, Rs1, kab, L, Ts }{ SKey( B ) } 
is a message similar to 2a, only addressed to B. 

The second part: 
3b.  S -> B : { Rb - 1 }{ kab } 

is used to ensure B that the server has produced the key 
and it is a response to the challenge sent by B in step 1. 

The third part: 
3c.  S -> B : { kab, Rs, Ts }{ SKey( A ) } % Vb 

is similar to the message 2b. 
After receiving these messages, the two parties now 

exchange the messages that will confirm them that the 
other side has received exactly the same password in the 
same run of the protocol. This is done in steps 4 and 5. 

The great thing about this protocol is that it minimizes 
the use of B’s capabilities in generating passwords and 
random numbers. The authentication process is grouped 
in sessions, the B agent having the capability of 
generating new authentication sessions if it wants to re-
generate a password, or re-authenticate himself. If a 
message is loosed, B will not have to create a new 
authentication session, but he will only send a message 
for the same session, the keys being re-sent and not re-
generated this way. The initial random number Rb is only 
used so that on response the client knows for which 
session was the authentication process started. 

In the future, we will offer a formalization of the 
protocol using Typed-MSR where we will model and 
analyze the users and the possible intruders as specified 
in [16]-[17]-[18], and using the Typed SPI-Calculus [19] 
that will allow us the verification of the protocol. 

 



V. CONCLUSION 
 

The described system allows the distributed 
authentication of users that are previously registered at a 
Coordinator. The system does not differ very much from 
other authenticated virtual organizations when we are 
looking at the way entities join the system. The main 
difference is that users are not required to have a 
password with any of the entities in the VO and still be 
able to authenticate themselves properly using a third-
party authentication protocol, as the one described in 
section III. 

This system is recommended for use in mobile 
networks where agents (nodes) move around 
continuously, collecting information and then leaving the 
organization. 

The protocol described in section III allows not only a 
third-party authentication, but was designed for the 
tolerance of message loss, and for use in environments 
that are not message-secure. 

In this paper, we have presented a system that offers a 
decentralized authentication protocol where each node 
may become an Authenticator. As future work we plan to 
construct a simulation model for the system that will 
allow us to detect and correct the possible faults. Also, 
we will have to investigate on the possibilities of 
evaluating the security “fingerprint” (password and 
random number generation capabilities) of a specified 
user so that the password will only become a back-up 
security element and not the primary means of 
authentication. 

In these kinds of systems, nodes may misbehave, may 
malfunction as the result of hardware/software error, 
generating random data in a Byzantine manner. This is 
why, we propose also as a future work, the introduction 
of behavior lists for each Authenticator agent so they may 
be excluded from the system in proper time. 
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