
Automation
Computers

Applied Mathematics
ISSN 1221–437X
Vol. 17 (2008) no. 2

pp. 169–178

Syntactic Sequential Composition of Security Protocols

Béla Genge and Iosif Ignat

Béla Genge: “Petru Maior” University of Târgu Mureş,
Department of Electrical Engineering, N. Iorga Str., No.
1, (4300) Târgu Mureş, ROMANIA

bgenge@upm.ro

Iosif Ignat: Technical University of Cluj-Napoca, Depart-
ment of Computer Science, Baritiu Str., No. 28, (3400)
Cluj-Napoca, ROMANIA

Iosif.Ignat@cs.utcluj.ro

Abstract: Determining if two protocols can be securely composed requires analyzing

not only their additive properties but also their destructive properties. In

this paper we construct an enriched protocol model for analyzing instance-

related properties and a canonical model for analyzing message structure-

related properties. The protocol model provides for each participant the

preconditions needed to run the protocol, the effects resulted from running

the protocol, the generated message components and the transmitted and

received message sequences. The canonical model integrates participant

knowledge in the model reducing each message component to its basic type.

This allows us to conduct a syntactical analysis on the canonical model and

to detect multi-protocol attacks that can be constructed by attackers in

case of composed protocols. The proposed method ensures the sequential

composition of protocols with the satisfaction of preconditions and non-

destructive effects.

Key Words: Security protocols, sequential composition, syntactic model verification.

MSC 2000: 68M12, 68Q60

Received: November 11, 2008

170 Syntactic Sequential Composition of Security Protocols

1 Introduction

Security protocols are “communication protocols dedicated to achieving security goals”
(C.J.F. Cremers and S. Mauw) [5] such as confidentiality, integrity or availability. Achieving
such security goals is made through the use of cryptography. The explosive development
of today’s Internet and the technological advances made it possible to implement and use
security protocols in a wide range of applications such as sensor networks, electronic commerce
or routing environments.

Security protocols have been intensively analyzed throughout the last few decades, re-
sulting in a variety of dedicated formal methods and tools [3, 4, 12]. The majority of these
methods consider a Dolev-Yao-like intruder model [1, 2] to capture the actions available to a
intruder which has complete control over the network. By analyzing each individual protocol
in the presence of this penetrator model, the literature has reported numerous types of attacks
[6, 4]. However, in practice, there can be multiple protocols running over the same network,
thus the intruder is given new opportunities to construct attacks by combining messages from
several protocols, also known as multi-protocol attacks [9].

Designing new protocols is a challenging task if we look at the number of attacks that
have been discovered over the years [6] after the protocols have been published. However, in
the last few years the use of protocol composition [7, 8, 9] has been successfully applied to
create new protocols based on existing [10, 11] or predefined protocols [7].

By composing existing protocols we create new protocols that have a unified set of security
properties. The composition process can combine protocol messages, known as parallel com-
position [10], or it can combine protocols without also combining protocol messages, known
as sequential composition [11].

The composition method presented in this paper uses a syntactical analysis of two or more
security protocols for determining existing security protocol attacks. In order to introduce
this method, we first present a protocol model that includes information related to protocol
preconditions, effects, participant knowledge, and the sequence of sent and received messages.

Based on this protocol model, we define a canonical model that allows a syntactical analysis
of the modeled protocols by eliminating instance-based information through the use of message
component types. By doing so, we syntactically model the knowledge of protocol participants,
used to identify and verify message components.

In order to prove that our method provides a safe composition of security protocols we
use the Dolev-Yao intruder model. We prove that if certain conditions are met, the intruder
can not use any of its powers to construct new attacks based on messages extracted from
other protocols. The method is also validated by verifying several composed protocols us-
ing the widely-adopted security protocol verification tool Scyther [12] which is one of the
only verification tools that provides an intuitive multi-protocol analysis approaches by simply
concatenating multiple security protocol specifications.

2 Protocol model

Protocol participants communicate by exchanging terms constructed from elements be-
longing to the following basic sets: P, denoting the set of role names; N, denoting the set of
random numbers or nonces (i.e. “number once used”); K, denoting the set of cryptographic
keys; C, denoting the set of certificates and M, denoting the set of user-defined message com-
ponents.

Béla Genge and Iosif Ignat 171

In order for the protocol model to capture the message component types found in security
protocol implementations [13, 14] we specialize the basic sets with the following subsets:

• PDN ⊆ P, denoting the set of distinguished names; PUD ⊆ P, denoting the set of user-
domain names; PIP ⊆ P, denoting the set of user-ip names; PU = {P \ {PDN ∪ PUD ∪
PIP }}, denoting the set of names that do not belong to the previous subsets;

• NT , denoting the set of timestamps; NDH , denoting the set of random numbers specific
to the Diffie-Hellman key exchange; NA = {N\{NDH∪NT }}, denoting the set of random
numbers;

• KS ⊆ K, denoting the set of symmetric keys; KDH ⊆ K, denoting the set of keys
generated from a Diffie-Hellman key exchange; KPUB ⊆ K, denoting the set of public
keys; KPRV ⊆ K, denoting the set of private keys;

To denote the encryption type used to create cryptographic terms, we define the following
function names :

FuncName ::= sk (symmetric function)

| pk (asymmetric function)

| h (hash function)

| hmac (keyed hash function)

The encryption and decryption process makes use of cryptographic keys. Decrypting an
encrypted term is only possible if participants are in the possession of the decryption key
pair. In case of symmetric cryptography, the decryption key is the same as the encryption
key. In case of asymmetric cryptography, there is a public-private key pair. Determining the
corresponding key pair is done using the function −1 : K→ K.

The above-defined basic sets and function names are used in the definition of terms, where
we also introduce constructors for pairing and encryption:

T ::= . | R | N | K | C | M | (T,T) | {T}FuncName(T),

where the ‘.’ symbol is used to denote an empty term.
Having defined the terms exchanged by participants, we can proceed with the definition of

a node and a participant chain. To capture the sending and receiving of terms, the definition of
nodes uses signed terms. The occurrence of a term with a positive sign denotes transmission,
while the occurrence of a term with a negative sign denotes reception.

Definition 2.1 A node is any transmission or reception of a term denoted as 〈σ, t〉, with
t ∈ T and σ one of the symbols +,−. A node is written as −t or +t. We use (±T) to denote
a set of nodes. Let n ∈ (±T), then we define the function sign(n) to map the sign and the
function term(n) to map the term corresponding to a given node.

Definition 2.2 A participant chain is a sequence of nodes. We use (±T)∗ to denote the set
of finite sequences of nodes and 〈±t1,±t2, . . . ,±ti〉 to denote an element of (±T)∗.

In order to define a participant model we also need to define the preconditions that must
be met such that a participant is able to execute a given protocol. In addition, we also need
to define the effects resulting from a participant executing a protocol.

172 Syntactic Sequential Composition of Security Protocols

Preconditions and effects are defined using predicates applied on terms: CON TERM :
T, denoting a term that must be previously generated (preconditions) or it is generated
(effects); CON PARTAUTH : T, denoting a participant that must be previously authenticated
(preconditions) or a participant that is authenticated (effects); CON CONF : T, denoting
that a given term must be confidential (preconditions) or it is kept confidential (effects);
CON INTEG : T, denoting that for a given term the integrity property must be provided
(preconditions) or that the protocol ensures the integrity property for the given term (effects);
CON NONREP : T, denoting that for a given term the non-repudiation property must be
provided (preconditions) or that the protocol ensures the non-repudiation property for the
given term (effects); CON KEYEX : T, denoting that a key exchange protocol must be
executed before (preconditions) or that this protocol provides a key exchange resulting the
given term (effects).

The set of precondition-effect predicates is denoted by PR CC and the set of precondition-
effect predicate subsets is denoted by PR CC∗. Next, we define predicates for each type
of term exchanged by protocol participants. These predicates are based on the basic and
specialized sets provided at the beginning of this section. We use the TYPE DN : T predicate
to denote distinguished name terms, TYPE UD : T to denote user-domain name terms,
TY PE IP : T to denote user-ip name terms, TYPE U : T user name terms, TYPE NT : T
to denote timestamp terms, TYPE NDH : T to denote Diffie-Hellman random number terms,
TYPE NA : T to denote other random number terms, TYPE NDH : T×T×T×P×P to denote
Diffie-Hellman symmetric key terms (term, number1, number2, participant1, participant2),
TYPE KSYM : T×P×P to denote symmetric key terms (term, participant1, participant2),
TYPE KPUB : T× P to denote public key terms (term, participant), TYPE KPRV : T× P
to denote private key terms (term, participant), TYPE CERT : T × P do denote certificate
terms (term, participant) and TYPE MSG : T to denote user-defined terms.

The set of type predicates is denoted by PR TYPE and the set of type predicate subsets is
denoted by PR TYPE∗. Based on the defined sets and predicates we are now ready to define
the participant and protocol models.

Definition 2.3 A participant model is a tuple 〈prec, eff, type, gen, part, chain〉, where
prec ∈ PR CC∗ is a set of precondition predicates, eff ∈ PR CC∗ is a set of effect predi-
cates, type ∈ PR TYPE is a set of type predicates, gen ∈ T∗ is a set of generated terms,
part ∈ P is a participant name and chain ∈ (±T)∗ is a participant chain. We use the MPART
symbol to denote the set of all participant models.

Definition 2.4 A protocol model is a collection of participant models such that for each
positive node n1 there is exactly one negative node n2 with term(n1) = term(n2). We use the
MPROT symbol to denote the set of all protocol models.

3 Composition of protocol models

The composition process involves composing in a first stage the protocol preconditions and
effects followed by the composition of participant chains. In this section we first formulate the
conditions needed for the precondition-effect (PE) composition which involves establishing the
satisfaction of protocol preconditions and the verification of the non-destructive properties
of protocol effects. This is followed by the protocol-chain (PC) composition for which we
construct a canonical model and verify the independence of the involved participant chains.

Béla Genge and Iosif Ignat 173

3.1 Composition of preconditions and effects

In the composition process of two security protocols we first need to compose the precondi-
tions and effects. In other words, we need to establish if the knowledge needed by protocol
participants to run a given protocol, expressed through the form of precondition predicates,
is available and if the set of precondition and effect predicates is not destructive.

In order to establish if the set of preconditions corresponding to a protocol can be satisfied
based on the effects corresponding to another protocol we use the predicate PART PREC :
PR CC∗ × PR CC∗. For two participant models, ς1 = 〈prec1, eff1, type1, gen1, part1, chain1〉
and ς2 = 〈prec2, eff2, type2, gen2, part2, chain2〉, the PART PREC predicate is defined as

PART PREC (eff1, prec2) =

{
True, if eff1 ⊆ prec2 ,
False, otherwise .

The non-destructive property applies only for the CON CONF because the absence of
another property, such as integrity or non-repudiation, does not affect the previous properties.
In order to establish if the preconditions and effects of two participant models are destructive
we use the predicate PART NONDESTR : PR CC∗ × PR CC∗ × PR CC∗ which holds only if
all confidential terms from one participant model maintain their confidentiality property in
the second participant model also. Thus, the predicate is defined as

PART NONDESTR(eff1, prec2, eff2) =

True, if EF1 6= CON CONF∨
if EF1 = CON CONF ∧ t1 = t2 then ∃EF2(t2) : EF2 = CON CONF ,

∀EF1(t1) ∈ eff1 ∧ ∀PR2(t2) ∈ prec2,
False, otherwise.

Based on the above given predicates we can state that in order to compose the precondi-
tions and effects corresponding to two participant models we need to establish if the predicates
PART PREC and PART NONDESTR hold. The precondition-effect (PE) composition is ex-
pressed through the use of the operator ≺PEς : MPART × MPART → MPART, which
generates a new participant model based on two given participant models. By using this
operator, we not only express the PE composition of participant models but also the order in
which the given participant models appear in the final, composed participant model. Thus,
we can state that given two participant models, ς1 and ς2, for which the PE composition
requirements are satisfied, we have that ς1 ≺PEς ς2 6= ς2 ≺PEς ς1.

The PE composition requirements of two participant models can easily be extended to
form the requirements for the PE composition of two protocol models. These requirements
include applying the ≺PEς operator on pairs of participant models for which the names
are equal. We express the PE composition of two protocol models through the use of the
≺PEξ : MPROT ×MPROT → MPROT operator. For this operator also, we can state that

given two protocol models, ξ1 and ξ2, for which the PE composition requirements are satisfied,
we have that ξ1 ≺PEξ ξ2 6= ξ2 ≺PEξ ξ1.

3.2 Composition of protocol chains

The PC composition makes use of a canonical model that focuses on terms that can be verified
by protocol participants. For each term from the protocol model, defined in the previous
sections, the canonical model provides a corresponding syntactical representation through the

174 Syntactic Sequential Composition of Security Protocols

use of basic types. These denote the terms that can be verified by protocol participants also
including a representation for terms that can not be verified because of limited participant
knowledge.

The verification process makes use of these types to decide if attacks can be constructed on
each protocol model by using terms extracted from the other considered protocol models. In
order to verify this we use an intruder model based on the Dolev-Yao [1, 2] model to capture
the powers that can be used by an intruder. We prove that if certain conditions are met, the
intruder can not use its powers to construct attacks on protocols based on messages extracted
from other protocols.

The basic types we consider are based on the specialized basic sets introduced in the
protocol model:

BasicType ::= pDN | pUD | pIP | pU | nT | nDH | nA | K | m | c | u,

where the given symbols correspond to participant distinguished names, user-domain names,
user-ip names, other user names, timestamps, Diffie-Hellman random numbers, other random
numbers, keys, user defined terms, certificates and unknown terms, respectively.

In the encryption process of the same plaintext, the use of two different keys, K1 and K2,
will produce two different ciphertexts. This is also true for the decryption process, where the
use of two different keys results in two different plaintexts. Because of this, we consider that
the type of the encrypted terms after decryption will change too, according to the keys that
are used. Thus we use an indexed key type ki, such that ki 6= kj , where i 6= j, to distinguish
between key types corresponding to different keys. In the definition of BasicType, the set of
all typed keys is denoted by K. We define the −1 : K → K function to map the canonical key
pair corresponding to a given canonical key.

The unknown type u corresponds to terms that can not be validated because of limited
role knowledge. By including this information in the specification we are able to detect subtle
type-flaw attacks using a syntactical comparison of typed terms, that otherwise would require
the construction of a state-space that can become rather large if we consider the existence of
multiple protocols in the same system.

Based on the defined basic terms we can now proceed with the definition of canonical
terms that makes use of the previously defined function names:

T ::= . | BasicType | (T , T) | {T }FuncName(T).

A canonical node is defined as a signed canonical term using the following definition.

Definition 3.1 A canonical node is any transmission or reception of a canonical term de-
noted as 〈σ, t〉, with t ∈ T and σ one of the symbols +,−. We use (±T) to denote a set of
canonical nodes. Let n ∈ (±T), then we define the function csign(n) to map the sign and the
function cterm(n) to map the canonical term corresponding to a given canonical node.

Before we proceed with the definition of canonical chains and canonical participant models we
need to define classifiers. These are attached to participant chains and are used to transform
canonical terms received from other participants based on local participant knowledge. We
define two such classifiers:

Classifier ::= CLP | CLV .

The first classifier CLP denotes the processing chain corresponding to a participant. This

Béla Genge and Iosif Ignat 175

chain contains canonical terms that correspond to participant knowledge. The second classifier
CLV denotes the virtual chain used to transform received terms from the transmitted form
to the received form based on the knowledge of the receiving participant.

Definition 3.2 A canonical participant chain is a sequence of canonical nodes. A classified
canonical participant chain is a pair 〈CL, lcc〉, where CL ∈ Classifier and lcc ∈ (±T)∗. We
use (±T)∗ to denote a set of canonical participant chains.

Definition 3.3 A canonical participant model is a pair 〈part, slcc〉, where part ∈ P is a
participant name and slcc ∈ (Classifier × (±T)∗)∗ is a set of classified canonical participant
chains. We use MPART-C to denote the set of all canonical participant models.

Next, we define a canonical protocol model as a set of canonical participant models.

Definition 3.4 A canonical protocol model is a collection of canonical participant models
such that for each positive canonical node n1 there is exactly one negative canonical node n2
with cterm(n1) = cterm(n2). We use the MPROT-C symbol to denote the set of all canonical
protocol models.

In order to compose two participant chains these must be instance independent and canonical
independent. The first condition refers to the non-destructive properties of preconditions
and effects while the second condition refers to verifying the independence of the involved
participant chains based on the canonical model introduced in this sub-section. We expand
these conditions to protocol models in the following definitions.

Definition 3.5 Two protocol models ξ1, ξ2 ∈ MPROT are instance independent if ∀ς1 ∈
ξ1, ∀ς2 ∈ ξ2, the predicates PART NONDESTR(eff1, prec2, eff2) and PART NONDESTR
(eff2, prec1, eff1) hold, where prec1 and eff1 are the preconditions and effects corresponding
to ς1 and prec2 and eff2 are the preconditions and effects corresponding to ς2.

Definition 3.6 Let csentEnc : MPROT-C → T ∗ be a function that maps all canonical posi-
tive terms corresponding to a given participant model and let crecvEnc : MPROT-C→ T ∗ be
a function that maps all canonical negative terms corresponding to a given participant model’s
processing chain. Two canonical protocol models ξ1, ξ2 ∈ MPROT-C are canonical indepen-
dent if ∀ς1 ∈ ξ1, ∀ς2 ∈ ξ2 and ∀t1 ∈ csentEnc(ς1), ∀t2 ∈ crecvEnc(ς2), ∀t′1 ∈ crecvEnc(ς1),
∀t′2 ∈ csentEnc(ς2), the predicates CONSTR(t1, t2), CONSTR(t′2, t

′
1) do not hold.

In the above definition, the CONSTR predicate expresses the fact that a given canonical term
can be constructed by instantiation from another canonical term. Informally, we consider
that this construction is possible if canonical terms from the same position are equal or that
the second term contains an undefined canonical term. The CONSTR : T × T predicate is
defined as

CONSTR(t, t′) =

True, if t = t′ ∨ (t ∈ BasicType ∧ t′ = u)∨
(t = u ∧ t′ ∈ BasicType),

CONSTR(t1, t
′
1)∧ if (t = (t1, t2) ∧ t′ = (t′1, t

′
2))∨

CONSTR(t2, t
′
2), t = {t1}f(t2) ∧ t

′ = {t′1}f(t′2) ∧ (t2 = t′2 ∨ t
′
2 = u),

False, otherwise.

We consider a regular intruder model for the protocol model and a canonical intruder
model for the canonical protocol model. In both cases, the intruder powers are the same

176 Syntactic Sequential Composition of Security Protocols

and are modeled as the following operations: generate terms (M) using the sequence 〈+t〉;
intercept terms (I) using the sequence 〈−t〉; repeat intercepted terms (R) using the sequence
〈−t,+t,+t〉; concatenate intercepted terms (C) using the sequence 〈−t1,−t2,+(t1, t2)〉; sepa-
rate intercepted terms 〈−(t1, t2),+t1,+t2〉; generate keys (G) using 〈+k〉 or 〈+k〉; encrypt (E)
using the sequence 〈−k,−t,+{t}f(k)〉 or 〈−k,−t,+{t}f(k)〉; decrypt (D) using the sequence

〈−k−1,−{t}f(k),+t〉 or 〈−k−1,−{t}f(k),+t〉.
Based on the intruder model we formulate the definition of protocol model independence

as follows.

Definition 3.7 Two protocol models ξ1, ξ2 ∈ MPROT are independent if there is no node
sequence that can be constructed by the intruder that leads to the acceptance of a term in ξ1
extracted from ξ2 and vice-versa.

Next, we prove, by using a proposition, that if two protocol models are instance independent
and their corresponding canonical models are canonical independent, then the intruder can
not construct attacks based on terms extracted from other protocols.

Proposition 3.8 Let ξ1, ξ2 ∈ MPROT be two protocol models and ξ′1, ξ
′
2 ∈ MPROT-C their

corresponding canonical models. If ξ1,ξ2 are instance independent and ξ
′
1, ξ

′
2 are canonical

independent, then ξ1 and ξ2 are independent.

Proof. We show that if ξ1, ξ2 are instance independent, then the intruder can not construct
valid cryptographic terms and if ξ′1, ξ

′
2 are canonical independent then the intruder can not

replay valid terms from one model to another.

Let CONF1 be the set of confidential terms from ξ1 and CONF2 the set of confidential terms
from ξ2. According to the instance-independence condition, if there exists a precondition
predicate PR(t) in ξ2 for t ∈ CONF1 such that PR = CON CONF , then t ∈ CONF2. From
this we have that the intruder can not obtain valid confidential terms from ξ1 to construct
cryptographic terms in ξ2. This means that the intruder can not use its G, E, D powers to
construct new cryptographic terms.

However, the intruder can still use its remaining powers to replay terms from one pro-
tocol to another. According to the canonical independence condition, canonical terms from
one protocol are not accepted in the other protocol. By construction, on instantiation, the
resulting terms will also not be accepted, resulting that the intruder can not use its remaining
powers to construct attacks. �

If two protocol models are independent, then their participant chains can be composed. We
use the ≺PCς : MPART × MPART → MPART operator to denote the PC composition of
protocol chains and the ≺PCξ : MPROT ×MPROT → MPROT operator to denote the PC
composition of protocol models.

3.3 Composition of protocol models

If two protocol models can be composed PE and PC, then they can be composed. The
composition operator we use to denote the composition of protocol models is ≺C :
MPROT×MPROT→ MPROT.

By sequentially composing several protocol models the resulting protocol model provides
a unified set of preconditions and effects and a unified set of participant chains. By composing
i protocols, the resulting sequence is written as ξ1 ≺C ξ2 ≺C . . . ≺C ξi.

Béla Genge and Iosif Ignat 177

4 Experimental results

In order to validate our approach we used existing protocol verification tools. The purpose
of the verification was to determine if new attacks become available when other protocols
are also present and if these attacks are also discovered by our approach. One of the few
tools allowing the verification of multi-protocol attacks is Scyther [12], which is the only tool
currently available that also detects type-flaw attacks [15], commonly found in multi-protocol
environments.

We have applied our method to several pairs of security protocols defined in the library
maintained by Clark and Jacob [16], for which there is also an online version available
[17]. Through our experiments we have verified the composition of protocol pairs such as
Yahalom-Lowe and Kao-Chow, Lowe-Needham-Schroeder and ISO9798, Lowe-Denning-Sacco
and Lowe-Wide-Mouthed-Frog, Andrew-Secure-RPC and CCITT X.509, Denning-Sacco and
Otway-Reese.

By applying the independence conditions we have discovered several new multi-protocol
attacks. For example, in case of the protocol pair Yahalom-Lowe and Kao-Chow, a new attack
was discovered that gave the intruder the possibility to replay valid messages from the Kao-
Chow protocol in the Yahalom-Lowe protocol. We have created a composed protocol and
used the Scyther tool to verify it. The result was that 2 new attacks were possible. After
correcting the problem, the Scyther tool did not detect any attacks, which was also confirmed
by our method.

5 Conclusion

We have developed a method for the sequential composition of security protocols. The
novelty of our approach is the fact that it provides a syntactical verification of the involved
protocols, that makes it appropriate for on-line automated composition applications.

Our proposal makes use of an enriched protocol model that embodies protocol precon-
ditions and effects. Messages exchanged by participants are modeled as sequences of nodes
called participant chains. Based on this model we proposed conditions for the precondition-
effect composition. This process involves determining if sufficient knowledge is provided by
previous protocols and if instance-specific security properties are maintained even after the
composition.

The protocol-chain composition process makes use of a canonical model that eliminates
message component instances. This model reduces each component of the protocol model
to its basic type. By doing so we are able to verify the instance-independent components of
security protocols and detect multi-protocol attacks in a syntactical manner.

We have applied the proposed composition method on several pairs of well-known security
protocols and have found new multi-protocol attacks. Our independence verification method
has been validated using the security protocol verification tool Scyther, constructed as a
state-space exploration method, by discovering the same multi-protocol attacks.

References

[1] D. Dolev, A.C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29: 198–208, 1983.

178 Syntactic Sequential Composition of Security Protocols

[2] I. Cervesato. The Dolev-Yao Intruder is the Most Powerful Attacker. 16th Annual
Symposium on Logic in Computer Science, LICS’01, IEEE Computer Society Press,
Boston, MA, 2001.

[3] F. J. T. Fabrega, J. C. Herzog, J. D. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 7: 191–230, 1999.

[4] C. Weidenbach. Towards an automatic analysis of security protocols. Lecture Notes in
Artificial Intelligence 1632: 378–382, 1999.

[5] C. Cremers, S. Mauw. Checking secrecy by means of partial order reduction. In S. Leue
and T. Systa, editors, Germany, september 7-12, 2003, revised selected papers LNCS,
Vol. 3466, 2005, Springer.

[6] Gavin Lowe. Some new attacks upon security protocols. In Proceedings of the 9th
Computer Security Foundations Workshop, IEEE Computer Society Press, 1996, pp.
162–169.

[7] Hyun-Jin Choi. Security protocol design by composition. Cambridge University, UK,
Technical report Nr. 657, UCAM-CL-TR-657, ISSN 1476-2986, 2006.

[8] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. 42nd FOCS, 2001, Revised version (2005), available at eprint.iacr.org/2000/067.

[9] Cas J. F. Cremers. Compositionality of Security Protocols: A Research Agenda. Electr.
Notes Theor. Comput. Sci., 142, pp. 99–110, 2006.

[10] A. Datta, A. Derek, J. C. Mitchell, A. Roy. Protocol Composition Logic (PCL). Electronic
Notes in Theoretical Computer Science Volume 172, 1 April, 2007, pp. 311–358.

[11] S. Andova, Cas J.F. Cremers, K. Gjosteen, S. Mauw, S. Mjolsnes, S. Radomirovic. A
framework for compositional verification of security protocols”, Elsevier, to appear, 2007.

[12] Cas Cremers, Scyther. Semantics and Verification of Security Protocols, Thesis, Univer-
sity Press Eindhoven, 2006.

[13] SAML V2.0 OASIS Standard Specification. Organization for the Advancement of Struc-
tured Information Standards, http://saml.xml.org/, 2007.

[14] OASIS Web Services Security (WSS). Organization for the Advancement of Structured
Information Standards, http://saml.xml.org/, 2006.

[15] J. Heather, G. Lowe, S. Schneider. How to Prevent Type Flaw Attacks on Security
Protocols. In the Proc. of the 13th Computer Security Foundations Workshop, IEEE
Computer Society Press, July 2000.

[16] J. Clark, J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0. York
University, 17 November 1997.

[17] Laboratoire Specification et Verification, Security Protocol Open Repository. http://
www.lsv.ens-cachan.fr/spore/, 2008.

